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1 Logic and Mathematical Language

1.1 Language

Definition 1.1.1 (Vocab)

The wocabulary is a set £ that consists of (Dparenthese (,) @ connectives —, — B)quantifier ¥V
@identity ~ B)variables vy, ... ©)predicates P"?, ... where np € N (D)functions f™f,... where ny € N,
written £ = {P,..., f, ...} in brief. Specially, regard P° as truth-value sentence T, L and f° as constant

CQy -e--

Definition 1.1.2 (Syntax)
The syntaz of first-order logic consists of
(1)L-expression is X;...X,, where X € L;
(2)L-term is in Sierm =X : (Ve Lwe X,(Vfe Lite X)fte X};
(3)atomic L-formula is t; = to and Pt where P € L,t € Sierm;
(4)L-formula is in Stormuta = (Y : Satomic formuia €Y, (Vv € L, 0, € Y) (-, — ¢, Yvp € Y)};
(5)variable v is free in formula ¢ o.w. bound, iff (Dv occurs in ¢ when ¢ € Satomic formuia @ is free in
¥ when ¢ = - Qv is free in ¢ or ¢ when ¢ =9 — ¢ Dv is free in ¢ and v # w when ¢ = (Vw)y;

(6)L-sentence is a formula ¢ s.t. (Vo € L)v is bound in ¢.

Definition 1.1.3 (Semantics)

(1)The L-structure is a set M that consists of (Dunderlying set M (2)interpretation function -
P PM C M f— fM: MY — M, written M = {M,PM .. fM ..} in brief. Specially, regard
MO as {E} then TM as truth-value T := {E} and LM as F := ().

(2)Interpretation of term (9) is a function t™ s.t. for subterm s and a € M™, D)sM(a) = a; when
s=v; @sM(a) = MM (a),...,t2"4(a)) when s = ft.

(3)For formula ¢(0) and @ € M™, M satisfies (a), written M |= ¢(a), iff
(a)tM(a) = t5'(a) when ¢ = t; =ty
(b)(t(@), .., t," (@) € P when ¢ = Pt
(c)M K ¢ when ¢ = -
(AME YV M E ¢ when p =1 — ¢
(e)(¥b € M)M [=(a,b) when ¢ = (Vw)y (v, w).

Definition 1.1.4 (Higher-order and Many-sorted Language)

(1) First-order language (FOL for short) has vocab, syntax and semantics above, denoted also by L,
while second-order language (SOL for short) adds:
(a)for vocab, divide variable into individual variable vy, ... and predicate variable X, ..., replace the
rules about variable by individual variable.

(b)for syntax, add recursive rules “(VX € L)(t € Sterm)Xt € Satomic formuia” and “(VX € L, ¢ €



Stormula) VX @ € Sformuia”, add free predicate variable.
(c)for semantics, add interpretation of atomic L-formula X%, add “(VS € M"X)M = +(a, R, S) when
o= (VY)y(9,X,Y)” into M = ¢(a, R).

Informally speaking, 1st-order quantifies only variable that range over individuals, 2th-order also
quantifies over sets, 3rd-order also quantifies over sets of sets, etc.

(2)Informally speaking, many-sorted Language (MSL for short) divides variables into several parts
called sorts, then extends vocab, syntax and semantics slightly. Note many-sorted structure M with sorts
S contains underlying sets My(s € S) and M : P+ PM C M, x... XM, ,f MM, x X M, =
Ms,.

Example 1.1.1

(1)Based on £ = {€} of set theory, the axioms of topology are at least 3rd-order, e.g. “a topology
is closed under unions” as "VU(VU eUd - U € T) = (FVVz(x € VU e U(z € U)) AV €T))”.

(2)To get lower-order or less-sorted, you might use more expensive vocab, e.g. “axioms of module”
is “2-sorted in £ = {+Rg, R, +u, } with sorts {R, M}” but “FOL in £ = {+} U R where (R, +r, Rr) is
a unitary ring and r € R is a l-ary function”.

(3)Moreover, we always sacrifice the cheap vocab for a good property in FOL, e.g. “axioms of
group” is “D(Vz,y, 2)(zy)z = z(yz) @(Fe)(Vz)(ex = ze = x A (y)yz = zy = €)” in L := {-}, but
“D(Vz,y,2)(zy)z = 2(y2) @Q(Vz)ex = ze = 2 @)(Va)zz~! =z 'z =¢” in L = {-,71 e}. Note every

axiom of the latter is universal sentence, there’re many advantages in model theory.

Remark 1.1.1

(1)To balance the unique readability against simplicity, for parentheses (Domit outermost (2)—
control nearest (right-associativity.

(2)Although £ = {P,..., f, ...}, actually we omit variable, identity, quantifier etc., e.g. |£ = {€}| =
Ro.

(3)Usually denote {¢;(0)}icr by X(v), M satisfy ¥ iff (Vo € T)M = .

(4)For set X, L(X) := LU X where x € X is O-ary function. For X C M, expansion of M is Mx
that adds interpretion 2™ +— x of £L(X) \ £; for sublanguage £~, reduct of ¢M is M | £~ that omits

interpretation of £\ L.

(®)

Remark 1.1.2 (sub, generator and base)
(1) construction sequence of t is (ty, ..., t,) where
()tn, =t
(V1 < i <nlti =0V @Of € Lyit, mying <iti = f(tiy,omti,,)-

(2)So s is subterm (resp. subformula) of t iff s is a term (resp. formula) and s is a subsequence of ¢.



(3)Generally speaking

(i)B is a subtype of A iff in an abstract sense B C A and B preserves specific type of A.

(ii) There’re three methods to describe “type generated by A”, i.e. the smallest type containing
A, the intersection of types containing A, constructive discription, e.g. substructure generated by A C M
is < A >=< A >yp:= {t"M(a) : t(z1,...,7n) € Sterm,a € A™}. For type S, usually denote the type
generated by A by S(A). Note the 1st and 2nd are from top to bottom while the 3rd from bottom to
top.

(iii)Usually B is generators of A of type S iff A = S(B), and B is basis of A of type S iff B is
generators as independent as possible, i.e. (Vb € B)S(B\ {b}) # A.

(iv)Usually a free type is a type that has a basis.
OWARNING: we won’t define sub, generator, base of types below unless something interesting happens,

e.g. base of topological space has some kind of difference.

1.2 Theory

Definition 1.2.1 (theory)
L-theory T := {p € Ssentence} Whose element is aziom.
(1)M is model of T, written M =T, denote the class of models of T' by Mod(T), ifft M satisfy T.
Th(M) :={¢ : ¢ € Ssentence N M = @} is complete theory of M.
(2)p is
(i)logical consequence of T, written T |= ¢, iff (VM = T)M k= ¢;
(ii)provable from T, written T F ¢, iff 3 proof of ¢ from T.
(A)T is
(i) satisfiable ifft (GIM)M = T;
(ii)inconsistent o.w. consistent, iff (3p € Ssentence)T F @ AT F —p;
(iii) complete iff (V)T F oV T ¥ ¢;
(iv)decidable iff 3 algorithm that when given ¢ € Sgentence as input decides whether T' = .

Remark 1.2.1
()M, N are elementarily equivalent, written M = N, iff Th(M) = Th(N).
(2) Elementary class is a class IC of L-structures s.t. (3T)K = Mod(T).

Definition 1.2.2 (recursion)
(1)basic primitive (function)
i1)Z:N—=>Nz—0
(i)S: N> Naz—ax+1
(i) P : N* - N, Z — w;

denote the set of basic primitive by Sy, (2)primitive recursive (or computable)



element of (g, X where

X,closed under composition and primitive recursion

(i) (composition)(VA(z1, ..., #m), 91(Z), .-, gm () f(T) = h(g1(Z), ..., gm (Z))

(ii) primitive recursion (or computability) means (Vg(Z), h(Z,Zpi1, Tnt2))f(Z,0) = ¢(Z) A
f(@,5(y) = h(Z,y, f(Z,y))
(3)u-/general recursive

element of (g, X where

X,closed under composition, primitive recursion and minimization operator
minimization operator means (Vf : N"1 — N)g(z) = puy(Vz < y(f(Z,2) 1) A f(Z,y) = 0).
For P(z,z) C Nt minimization quantifier p s.t. (nz < yP(z,2) =
min{z:z <yAP(Z,z)} if well defined
y+1 o.w. .
(4) (total) recursive o.w. partial recursive
iff f is p-general recursive and total.
(5)recursively enumerable (r.e. for short) of X C N
iff X =0 or (3recursive f)X = {y: (3z)f(x) =y}

Remark 1.2.2

(1)By characteristic function, if we define some property for function or set, then there’s natural
generalization for the other.
OWARNING: we won’t define such property twice below unless something interesting happens.

(2)L recursive iff (3 algorithm e)(V{X;}7) where X, is a symbol in £, decides whether X;...X,, is

L-formula.

Remark 1.2.3
(1)(informal)code; Gédel number; decode; Turing machine; procedure; halt; Turing computable;
algorithm; effective; decidable
(2)(informal)proof is a sequence of L-formulas generated by proof system which satisfies
(i)length of sequence is finite;
(i)if T+ ¢, then T |= ¢;
(ii)if |T'| < oo, then (3 algorithm e)(Vep, {¢;}7)when given {¢;} as input, e decides whether
{¢;} is a proof of ¢ from T.

Definition 1.2.3 (definition)

X C M™ is A-definable where A C M, denote ()-definable by definable, iff
Fe(v,w))(Faec A™X ={Z e M" : M E ¢(z,a)}.

In this case, p(7,a) define X.



Remark 1.2.4
(1)Lo-structure N is definably interpreted in L-structure M iff
(In)(IX C M™)(VP, f € Lo)(3AL — definable P* C X"P f* C X+ (X PY . fY ) =N.

(2)E.g. interpret finite poset in Hasse diagram and interpret category in commutative diagram

1.3 Model Theory



2 Set and Category Theory

2.1 various theory

Definition 2.1.1 (equivalence)

L = {~}, T of equivalence consists of
(1)(reflexive) (Vo)z ~

2

3

(2)(symmetric) (Vz,y)z ~xy >y~
(3)(transitive) (Vz,y,z)z = yAy~z =z = 2.
Remark 2.1.1

We can compare two equivalence which is finer or coarser.

OWARNING: we won’t define such property below unless something interesting happens.

Definition 2.1.2 (order)
L = {<}, T of partial order consists of
(1)(Vz)x < x
(2)(antisymmetric) (Vz,y)(z <yAy <z —x =y)
B)(Va,y,z)(r <yAy<z—x<2)
the underlying set of its model is partial order set (poset for short).
(i)preorder (1)(3)
(ii)linear order (or chain) (2)-(4)(Vz,y)z <yVy <z
(iii)well order (2)-(5)(3x)(Vy)x < y.

Remark 2.1.2
(1) Upper closure (resp. lower closure) of x € X is 2™ =tz :={y € X : z < y} (resp. X or | z).
Upper closure of A C X is AT™ =1 A := Uasca at™.
(2)interval < x,y > where < (resp. >) is (‘or [ (resp. ) or ])
(i)open interval (z,y) :={z€ X 1z < z <y}
(ii) closed interval [z,y] =T 2N |y
(iii) half-open interval contains left-open interval and right-open interval.
x € X covers ye X, written y <z iff y<zandVze X(y <2<z — (z=yVz=ux).
(2)ae AC X is
mazimal (resp. minimal) of A, written max A (resp. min A) iff 1 aN A = {a}
ze X DAis
(i)upper bound (resp. lower bound) of A, denote the set of upper bounds of A by ub(A) (resp.
Ib(A)), iff (Va € A)a < z;
(ii) supremum (or least upper bound) (resp. infimum) or join (resp. meet) of A, written sup A

(resp. inf A) or \/ A (resp. A A), iff z = minub(A).



OWARNING: for @), it not has maximal, might have supremum, always has upper bound. This must
be taken into consideration when giving the well defined. (3)Poset X is
(i)pointed iff min X exist, called bottom written L.
(ii)pointed directed-completed (pointed dcpo for short) iff any directed subset or emptyset has a
supremum in X, denote supremum z of directed subset A by 2 = VT A.
(a)directed-complete (dcpo for short) iff any directed subset has a supremum in X;
(b)finite complete iff (Vax,y € X)zVy,x Ay € X;
D V-semilattice iff (Vz,y € X)xVy
@A-semilattice iff (Vz,y € X)z Ay
(c)Dedekind complete (conditional complete or least-upper-bound property) iff any non-
empty subset with an upper bound has a supremum in X;
(d) complete iff any subset has a supremum in X.
(iii) dense iff (Vz < y)(Fz)z < z < y.
(4)A C X is
(i)upper set (resp. lower set (or initial segment)) iff ATX = A;
(ii) (upward) directed (resp. filtered (or downward directed)) iff A # () and (Va,b € A)(Ic €
A)a,b < ¢;
(iii)ideal (resp. filter) iff A is a lower set and directed;
(iv)principal ideal (resp. principal filter) iff A is ideal and max A exists;
(v)cofinal (or frequent) (resp. coinitial) in X iff (Vo € X)(Ja € A)x < a.
OWARNING: note C is a partial order relation, so we won’t define the same item twice unless something
interesting happens. For instance
(i)ideal in order theory coincides with ideal in set theory, where
(a)(Va,be A)avbe A
(b)(Va € A)(Vb=a Ab)b € A;
(ii)A finite complete poset naturally becomes a lattice, while a pointed dcpo naturally becomes a

complete lattice.

Theorem 2.1.1
(1)Any subset has a supremum iff any subset has an infimum; any non-empty subset with an upper
bound has a supremum iff any non-empty subset with an upper bound has an infimum.

(2)In domain theory, pointed directed-completed iff chain-complete (every chain has a supremum in

X).

Definition 2.1.3 (set)
L = {€}, T of Zermelo-Fraenkel with Choice (ZFC for short) consists of
(1)(extensionality) (Vz)(Vy)((Vz)(z €z <> z € y) =z =y)
(2)(axiom schema of separation) (Vo(z, z,wy, ..., wy)) (Ywy)...(Ywy,) (V2)(Fy) (V) (z € y > (x € 2 A



(3)(pairing) (Vz)(Vy)(3z)(x € z Ay € z)

(4)(union) (Vz)(Jy)(Vw)((Fz)(w € 2 Az € ) = w € y)

(5)(power set) (Va)(3y)(Vz)(z Cz — z € y)

(6)(axiom schema of replacement) (Vo(x,y, wi, ..., wy)) (Ywy)...(Vw, ) (V2) (V) (x € 2 = (3ly)p) —

(Fu)(Vz)(z € z = (Fy)(y € ur@)))

(7)(infinity) (3z)(0 € z A (Vy)(y € = — S(y) € 7))

(8)(regularity) (Vz)(z #0 — Fy)(y € z Az Ny = 0))

(9)(choice) (Va)((Vy1)(Vy2)((y1 € 2 Ay2 € ) = (12 # DA (1 = 32 Vyr Ny2 = 0))) = (32)(Vy)(y €
z— Fw)w € yN z2)).

Remark 2.1.3
For axioms in relatively brief forms above, add details after (2)(5)(9) separately:
(A)By (2
(B)By (2
well defined. By (2)(4), U(z) :={z: 3y)(z € y Ay € z)} is well defined. union of two x Uy :=U(x,y),
successor function S(x) := xz U {z}. By (2)(5), power set P(x) = 2% := {z: z C x} is well defined.
(C)By (2), (6) can be strengthened to (Vo(x,y,ws, ..., w,))Ywr)...Vw,)(Vz)((Vz)(z € z —

Bly)e) = Bu)(Vy)(y € u & (Bz)(z € 21 p))).
ordered pair (z,y) = {{z},{x,y}}, index set, (x;);c;. Note it has some subtle difference from

), empty set O := (Vz)(z ¢ () is well defined. subset z C z:= (Vw)(w € z = w € z).
)

, intersection of two x Ny :={z: 2z € x Az € y} is well defined. By (2)(3), {z,y} is

“sequence” .

Remark 2.1.4
We will adopt von Neumann-Bernays-Gddel (NBG for short) set theory along the journey, which is
a conservative extension of NFC.
L = {€,IsSet} where IsSet is a l-ary predicate, (10)(Vx)(IsSet(x) < (Jy)z € y) and some

subtle differences. And proper class is a class that is not a set.

Definition 2.1.4 (set operation and property)
(1) difference z\y :={z:z €z, z ¢ y}
(i) complement z¢ :=U \ x
(ii) symmetric difference xAy := (z\y) U (y\z)

(2)union J;c; Xi = {x: (Fi € Iz € X3}
disjoint union |_|Z€I = U;er{(z,9) : z € X5}
(3)intersection (\;c; Xi :={x : (Vi € I)xz € X;}

(4)product [[;c; Xi == {(®i)ier : s € X} or {f : I = U;c; Xil(Vi € I)f(i) € X;} then denote f by (z;)
power XY :={f:Y — X}
(5)quotient X/ ~:={[z] : z € X}



equivalence class of © € X about ~ is [z] :={y € X : y ~ x}.
(6){Xi}ier is
(i) (pairwise) disjoint iff (Vi,j € I)X; N X; = 0
(ii)when I C N, monotonic iff (increasing) X1 C X5 C ... or (decreasing) X1 2O X D ...
(a)limit superior limy, 00 X, = oy Use,, Xis
(b)limit inferior lim,_, o X» = Ur—q Mooy X
(c)limit limy, o0 X, exist iff lim X,, = lim X,,, then let lim X,, = lim X,.
(7)X is/has
(i)nontrivial iff X # () (and not proper class or underlying set);
(ii) disjoint iff (¢ x = 0;
(iii) finite intersection property (FIP for short) iff (V{z;}} C X) (] z; # 0.

Remark 2.1.5
(1)Specially for I =0, ¢,
(2)If we write (I{X;})Y = | |;c; Xi, usually it is considered as (Idisjoint{X;})Y = {J;c; Xi.

X; =0, N;er Xi is proper class or underlying set, [],., X; = {0}.

OWARNING: strictly increasing iff X1 C X, C ..., and we won’t define monotone etc below unless
something interesting happens.
(3)P C P(X) is
(i)cover of X iff X C U, cpp;
(i)partition of X iff 0 ¢ P and X =||,cpp.
(ii1)Q is refinement of P iff (Vp € P)(3H{q:} C Q)p = q;-
(iv)PANQ:={pNqg:p€ P,qgeQ,pNq#0}, similarly PV Q is the refinest partition of which
P, Q are refinement.
(4)To understand limit of set sequence, lim, .00 X,, = {z : (31 < ny < ..)Vi)z € X,,},
lim, ., X, ={z:(3no)(¥Yn>no)z € X,}.
(5)As is the set of countable intersections of elements in A while As symbolizes countable unions,

denote (A,)s by Ays5. Note GUV AB is usually used for open sets while FWCDK for closed, hence
Gy, F, etc. is frequently used.

Definition 2.1.5 (family of set)
For set X, ) # F C P(X) is
(1)m-system II iff
(VA,Be F)ANB € F;
(2)A-system A iff
)0 eF
(ii)(VA e F)A° e F
(i) (V{ A} € F)LI® As €



(3)monotone class M iff

H(V{Ai}° € F)((Vi)A; € Aipr) > Uy Aie F

(i) (V{Ai}5° C F)(Vi)Ai 2 Aitr) = N7 Ai € F;
(4)semiring iff

(i) (VA,Be F)ANB € F

(ii)(vVA, B € F){C:H € F)A\ B =L Ci
(5)ring R iff

(i) (VA,Be F)AUB € F

(ii)(VA,B € F)A\ B € F;
(6)0-ring iff

(i) (VA,Be F)AUB € F

(ii)(VA,B e F)A\ Be F

(i) (A} € F) T As € F;
(To-ring YR iff

H({Alre c AU Aie F

(ii)(VA,B € F)A\ B € F;
(8) elementary family (or semialgebra) iff

i) eF

(ii)(VA,Be F)YANB € F

(iii) (VA € F)(3H{C;}r C F)Ac = ||} Cy;
(9)algebra (or field) A iff

i) eF

(ii)(VA e F)Ac e F

(iii)(VA, B € F)AUB € F;
(10)o-algebra X iff

herF

(ii)(VA e F)Ac e F

(i) (V{A:}5° € F)US° As € F;
(11)filter iff

(i)(VA,Be F)ANB € F

(ii) (upward closure (or isotony)) (VA € F)(VAC B C X)B € F;
(12)ultrafilter (or maximal filter) iff

(i) (VA,Be F)ANB e F

(i)(VA € F)WACBC X)B e F

(iii) (proper)d ¢ F

(ivIVAC X)A e FV A® € F;
(13)ideal iff

(i) (VA,Be F)AUB e F
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(ii)(VA € F)(VB C A)B € F;
(14)prime ideal iff

(i) (VA,Be F)AUB e F

(i) (VAe F) (VB C A)B e F

(iii) (proper) X ¢ F

(ivIVAC X)Ae FV A® e F;
(15)topology T ift

()0, X € F

(ii)(VA,Be F)YANB € F

(iii) (V{Ai}ser € F)U;er As € F.

Remark 2.1.6

(1)Space is a set X with specific structures on it, e.g. topological space (X, T), measurable space
(X,3). Then call the element of X point (pt for short).

(2)Note filter could also be defined by nontrivial, downward directed and upward closure. Since
under upward closure, (VA,B € F)ANB € Fiff (VA,B € F)(3C € F)C C A, B.

(3)Note for algebra generated by semialgebra, just add all finite disjoint unions. We will use it to
induce a measure on an algebra from a measure on a semialgebra. For more construction sequences, see

below.

Theorem 2.1.2 (monotone class theorem)

For algebra A on X, M(A) = X(A).

Proof. By M(A) C M(X(A)) = 3(A), suffice to show M(A) = Z(M(A)). Note a class that is both algebra
and monotone class is a o-algebra by ;" E; = Uil(uzzl E;), suffice to show M := M(A) is an algebra.
For E € C, define M(E) = {F e M : E\ F,F\ E,ENF € M}, note M(FE) is a monotone class and
Ee M(F)& Fe M(E). If E € A, then A C M(FE) hence (VE € A)M C M(E). Hence if F € M, then
(VE € A)F € M(E), ie. (VE € A)E € M(F) so A C M(F). Therefore (VF € M)M C M(F), ie. M is

closed under difference and intersection. O

Remark 2.1.7

(1)In the proof above, we use the outer way and a 2-ary version of its common trick (Trick: to prove
all elements of a specific type satisfy property P, pick the set of all elements satisfy P, then show that
set is the same type and contains all generators). To prove M (A) is closed under complement, the outer
way uses M; :={F € M : E° € M} and M C M; by showing A C M; and M is a monotone class,
while the inner way uses transfinite induction to its construction sequence.

(2)For F C P(X),

OINF) ={N] F; : (Vi)F; € F}

11



()R(F) = {mA...Amy, : (Vi)m; € II(F)}

(i) A(F) = R(FU{X}) =R(F)U{X\R: Re R(F)}
(iv)Define 7* = {U7°(4: \ B;) : (Vi)A;, B; € F U {0}}, recursively define 7y = F and F3 =
(Uacp Fa)*, then ZR(F) = Uyey, Fo

(V)E(‘F) = Ua<w1 (‘FU {X})a
Btw, with (4v) and transfinite induction, we can get |B(R™)| = N.

Definition 2.1.6 (relation and function)
(1)R is a n-ary relation on Xy, ..., X, iff R C X7 x ... x X,,, denote (z1,...,x,) € R by R(z1...x,).
(i)domain dom(R) := {Z : (Iy)RZy}
(ii)range ran(R) := {y : (3%)Rzy}
(iii)image R(X) :={y: (3 € X)Rzy}
(iv)inverse image R=*(Y) := {z : (3y € Y)Rzy}
(v)inverse R=! := {(Z,9)|Ryz}
(vi)composition S o R := {(z, z)|(3y)Rzy N Syz}
(2)Relation f is a function iff (Vz)(3ly)fzy, denote fzy by f(Z) = g and f from X = dom(f) to
Y Dran(f)by f: X =Y, T — 7.
(D) restriction of f : X Y to ZC X is flz: Z =Y,z f(2);
(ii) extension of f is g iff restriction of g is f;
(iif) f is
(a)injective iff Vq, 20 € X (f(21) = f(22) = 1 = 22);
(b)surjective iff (Vy € Y)(Izr € X) f(x) = y;

(c)bigective iff f is injective and surjective.

Remark 2.1.8
(1)Especially in recursive theory, for f : X — Y, dom(f) can be a subset of X, then for z € X,
f(x) | (resp. f(x) 1) iff © € dom(f). fis
(i) total iff (Vx € X)f(x) |
(i) partial iff (Fz € X)f(z) 1.
(2)For f: X — Y, it naturally induces two set function f : P(X) — P(Y) and f~1 : P(Y) — P(X),
though f~!':Y — X not always exists.
(3)Two ordered sets X and Y are said to have the same order type iff there exists a order isomorphism

between X and Y.

Example 2.1.1
(1)Specific
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1 i=3j
(i) Kronecker symbol §;; =
0 i#j
1 z€A
(ii) characteristic function x a(x) :=
0 z¢ A
iii)indexing function for X is surjective f : I — X, denote X by {x;}icr

iv)identical map id, : X — X,z — x

(

(i

(v)constant map ¢y, : X = Y, 2 — yo

(vi)inclusion map from X CY to Y is idy|x, written ¢ : X — Y

(vii)projection map from X DY toY isp: Y — X st. plxop=p

(viii) quotient map (or canonical map) ©: X — X/ ~, x> []

(ix)n-ary operation on X is f: X" — X

(2)For a: M — N where M € M and N € N/, v is

(i)homomorphism iff
(a)(Vf € L)(Vay,...,an, € M)a(fM(ay,...,an,)) = N (a(ar), .. yo(an,))
(b)((VR € L)(Vay, ..., an, € M)RM(ay,...,an,) <> RN (a(ay), .. yofan,)))

denote the set of homomorphisms from M to N" by Hom(M, N) and End(M) := Hom(M, M)

whose element is endomorphism;

(ii)embedding (or monomorphism) iff o is homomorphism and injective;

(iii) epirnorphism iff v is homomorphism and surjective;

(iv)isomorphism iff « is homomorphism and bijective, denote the set of isomorphisms by

Isom(M,N) and Aut(M) := Isom(M, M) whose element is automorphism.
M is isomorphic to N, written M = N, iff Isom (M, N) # 0.

Definition 2.1.7 (sub)
(1) M is substructure of N (or N is extension of M), iff ) # M C N and the inclusion map is embedding.

(2)up to isomorphism

We have the following chains of inclusions for continuous functions over a closed, bounded interval of the real
line: Continuously differentiable C Lipschitz continuous C absolutely continuous C continuous and bounded
variation C differentiable almost everywhere
2~ (1/z)
0
(1)For f : R™ — R™ differentiable at g iff exist a linear map J : R™ — R" s.t. limp,_,0 lf @oth) = f(wo)=J(A)llen _

[1A]lrm

Lipschitz continuous that are everywhere differentiable but not continuously differentiable: f(x) =

0 (If a function is differentiable at xo, then all of the partial derivatives exist at xg, and J is given by Jaco-
bian matrix, n x m) (If all the partial derivatives of a function exist in a neighborhood of a pt xy and are

continuous at zg, then the function is differentiable at xzo. However, the existence of the partial derivatives
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2
T yFzw
(or even all the directional derivatives) doesn’t guarantee differential at pt. E.g. f(z,y) = not

0 ow.
differentiable at (0, 0) but all the partial deirvatives and directional derivatives exist. For a continuous example,

v’ /(@ +y*) (z,y) #(0,0) , , e N
flzyy) = not differentiable at (0,0) but all the partial deirvatives and directional

0 ow.
derivatives exist.)

For complex-valued f : C — C, differentiable at a € Riff f/(a) = limp—0nec w exist. Although it looks
similar to real-valued, however more restrictive condition. A function f : C — C that is complex-differentiable
at a is automatically differentiable at a when viewed as a function f : R? — R2. This is because complex-

differentiability implies limp_0 nec I/ (“Jrh)*{ f(b‘ll)ff (@h] oxist. However the converse is wrong, counterexample

2) =52

Any function that is complex-differentiable in a neighborhood of a point is called holomorphic at that point.

Such a function is necessarily infinitely differentiable, and in fact analytic.

The key of difference between complex-differentiable and real-differentiable is (??7?C has multiplication structure
while R? not). The complex-differentiable functions locally look not only like a linear transformation R? — R2,
but like a linear transformation corresponding to multiplication by a complex number, which we can identify

with linear transformations of the plane by the obvious multiplication (a,b) - (¢,d) = (ac — bd, ad + bc), so the

a —
matrix must have the form . Such functions have many properties, which gives complex analysis a
b a

much different flavor. For example, if we view complex functions on (simply connected subsets of) the complex
plane as vector fields on R?, then complex-differentiable functions will be conservative vector fields. In other
words, derivatives are linear maps that approximate the function within o. If f is differentiable at x, then
flx+1t) = f(x)+ A(t) + o(t) where A is a linear map and lim;_, % = 0, note |t| is the same as a complex or
R2. But in R%, A can be any linear map, i.e. 2 x 2 matrix with entries in R. In complex case, A is linear map
of 1-dimensional complex vector, i.e. 1 x 1 matrix with entries in C. if we think C as R2, then A is a rotation
and scaling, not every 2 x 2 linear map is of this form.

(2)For a real-valued (pr complex-valued) (?not need? continuous) function f, 1-dimensional total variation on
[a,b] C R is V2(f) = supp Z?:”O_l |f(zit1) — f(z;)| where partition P = {zo, ..., s, } n-dimensional Let
be an open subset of R, f € L'(Q), total variation of f in Q is V(f,Q) = sup{ [, f(z)div p(z)dzx : ¢ €
CHLR™), [|¢|| () < 1} Note note require bounded (1)C} (€2, R™) the set of continuously differentiable vector
functions of compact support contained in  (2)|||| () is the essential supremum norm (3)div is the divergence
operator

A continuous real-valued f on R is bounded variation (BV function) on [a,b] C R iff its total variation is finite
For n-dimensional, two equivalent definition.

(3)absolutely continuous I interval of R, f : I — R is absolutely continuous on I if Ve > 03§ > 0 s.t. VN,
V{(zk, yx) : Tk < yx € I} disjoint satisfies Zszl(yk —x) < 0, then chv=1 |f(yr) — flzr)] <€

absolute continuous C uniformly continuous

uniformly continuous iff Ve > 030 > 0 s.t. V|z —y| <9, |f(z) — f(y)] <e

(4)For metric spaces (X, dx), (Y,dy), f : X — Y is Lipschitz continuous if 3 real constant K > 0 s.t. Vo, z9 €

14



X, dy (f(z1), f(z2)) < Kdx (z1,22)

a-Holder continuous if 3 real constant K > 0 s.t. Vo1, 29 € X, dy (f(z1), f(22)) < Kdx (a1, 22)"

locally Lipschitz continuous iff for any x € X, exists neighborhood U 3 z s.t. f|y is Lipschitz continuous

(5)f is continuously differentiable if f'(x) exist and is continuous. Continuous functions are said to be of class
C°, continuous differentiable functions C*', A function of class C? if the 1st and 2nd derivative of the function
both exist and are continuous. C*>° smooth f" exist for all n

f is differentiable iff the derivative exists at every point in its domain (f is differentiable at x then f must be
continuous at x)

Let G = (g1, ...gn) be a map from an open set Q@ C R™ into R™ whose components g; are of class C*

Denote ((0g;/dz;)(x)) of linear map partial derivatives at x by D, G. Observe that if G is a linear transformation
viz. matrix, then D,G = G for all x

G is a C" diffeomorphism if G bijection and G,G~! € C" (diffeomorphism means C> diffeomorphism)

Remark 2.1.9
By Inverse Function Theorem, f : Q — f(Q) is C! diffeomorphism only need f € C!, f injective,
Jr = D, f is invertible for all x € Q

For C! diffeomorphism, only need G is injective and D, G is invertible for all € Q
a (topological) manifold is a second countable Hausdorff space that is locally homeomorphic to a Euclidean

space.

Theorem 2.1.3 (Inverse Function Theorem)

(1)(local) For open U C R™, V CR™, f:U — V € C*, if J¢(a) is injective for some a € U, then there
exists an open nbd A C U of a and V O B D f(A) s.t. f: A — B is bijective and f~': B -+ A € CF
(det(Jj-1(a)) = 1/ det(J5(a))).

(2)(global) For open U C R™,V C R™ (more generally, manifold), f : U — V € C¥, if f is injective on
a closed subset A C U and J; (the Jacobian matrix, J; = VI f = D, f = (ga{] )ij) is injective for all
a € A, then f is injective in an open nbd A’ of A and f~!: f(A') = A" € C* (D,(f™!) = [Dj-1(x) f]*
for all x € f(£2))

Lemma 2.1.4 (extend local into global)
For A is a closed subset of a topological manifold X (more generally, a topological space, admitting an
exhaustion by compact subsets), topological space Z, if f : X — Z is a local homeomorphism that is

injective on A, then f is injective on some open nbd of A

The mapping o — f(z¢) is a function, where z( is an argument of a function f. At the same time, the mapping
f = f(xo) is a functional where xg is a parameter. Provided that f is a linear function from a vector space to
the underlying scalar field (the set of all linear function from V to F is also a vector space, called (algebraic)
dual space, written Hom(V, F') or V*), the above linear maps are dual to each other, and in functional analysis

both are called linear functionals. linear functional T : V* — F' is positive iff (Vf e V* A f>0)Tf >0
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Riesz: To every positive linear fucntional T on C there corresponds a finite positive Borel measure p on I s.t.
Tf= [, fdu (f € C) the converse is obvious
Hilbert space is a real or complex inner space that is also a complete metric space with respect to the distance

function induced by the inner product.

Theorem 2.1.5 (For convex)
(1)f conver iff E = {(z,y):y > f(z),z € Q} convex

Assume supporting hyperplane at (zq, f(z¢)) is < n,2 —xo > + < v,y — f(x0) >= 0, then 7 < 0
and f(z) > f(xg) — %77 < (z — z0),Vz € Q (2)for convex A, xg € 9A, In € R” < n,z — x9 >< 0 for
all z € A (< n,x — xo >= 0 is the supporting hyperplane at xg) (3)(hyperplane separation theorem)
A, B C R™ convex disjoint, then 3n € R*, c € Rs.t. <z,np>>c¢,<y,n><cforallz € Ajy € B (4)
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3 Elementary Algebra

3.1 Group, Ring, and Field

3.2 Advanced Linear Algebra

3.3 Commutative Algebra

3.4 Module Theory, Homology Algebra
3.5 Representation Theory

3.6 number theory

Definition 3.6.1 (ordinal and cardinal)
(1)Set X is an ordinal iff (X, C) is strictly well-ordered and (Vx € X)x C X, denote the class of all
ordinals by Ord.
0, successor ordinal iff (3Y € Ord)X =Y U{Y}, limit ordinal iff (VY € Ord \Y < X)(3Z € Ord)Y <
Z < X.
(2)The cardinal (or initial ordinal) of a set X, written card(X) or | X|, is the least ordinal number « s.t.
there exists a bijection between X and a.
The a-th infinite initial ordinal is written w,, and its cardinality is written N,lpha.
(3)The cofinality of a partial order set P, written ¢f(P), is the least cardinal of all cofinal subsets of P.
An ordinal « is regular iff o = cf ().
(4) Ordinal-indezed sequence is a function from ordinal « to set X, specially (ordinary) sequence when
a =w. sequence in X is f : Zso — X, written {z, }7°.
subsequence of f is f o g where g : Z~o — Z~g s.t. (Yn < m)g(n) < g(m).

(2)R =R U {—00, +0}. (3)For a,b € R,

Remark 3.6.1

(1)w and w + 1 have the same cardinal but not the same order type, since there not exists order

0 z=w
isomorphic but bijection between them. Bijection could be f : w+1 — w, x , hote order
z+1 ow.

isomorphism preserves the existence of a maximal element so no order isomorphism exists. Moreover, if
two ordinals are order-isomorphic then they are equal.
(2)Under the order topology, a limit ordinal is the limit in a topological sense of all smaller ordinals.

(3)w, wy (the first uncountable ordinal),...

Example 3.6.1
A discription of ordinal is 0 := 0, 1 := {0}, 2 := {0, {0}}, 3 := {0, {0},{0,{0}}}
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Theorem 3.6.1 (transfinite induction)

If P(«) is true whenever P(3) is true for all 5 < «, then P(«) is true for all «

Remark 3.6.2

Every ordinal is either zero or a successor or a limit. This distinction is important, because many
definitions by transfinite recursion rely upon it. E.g. when defining a function F by transfinite recursion
on all ordinals, one defines F'(0), then F'(o + 1) assuming F'(«) is defined, then for limit ordinals F'(5)
as the limit of the F(«) for all a < 5.

Definition 3.6.2

(ordinal and cardinal arithmetic) For ordinal, (1)Addition: « + 3 is given by transfinite recursion on
(a+0=a (i)a+ S(8) = S(a + B) for a successor ordinal S(B) (ii)a + 8 = s 5(c + d) when 3 is a
limit ordinal. (2)Multiplication: « + 8 is given by transfinite recursion on g

(a-0=0 (ii)a-S(B) = (a-B) +«a for a successor ordinal S(B) (iii)a- B = Us5(c-0) when f is a limit
ordinal. (3)Exponentiation: o is given by transfinite recursion on j3

(1)al =1 (ii)a’®) = (a?) - a for a successor ordinal S(B) (iii)a? = U5<B(a5) when 3 is a limit ordinal.
For cardinal, (1)Addition: |X |+ |Y| = |X UY| (2)Multiplication: |X|-|Y| = |X x Y| (3)Exponentiation:
|X|'Y| = |XY| where XY denote the set of all functions from Y to X

Remark 3.6.3
(1)Note ordinal addition is not commutative, e.g. 1 +w = w # w + 1, and only left-cancellative.
(2)Every ordinal number a can be uniquely written as cantor normal form w®ic; + ...+ w?* ¢}, where

k€w, ¢ €w\{0}, ordinal 51 > By > ...> B >0

real line (R, +, -, <) where +, -, < satisfy the axioms of a complete archimedeaan ordered field

arithmetic of extend real number: note 0 - co = 0 in measure theory and probability theory

Theorem 3.6.2 (open set decomposition in R)
(1)Let partition P = {[a;,b;] : 0 <i<n,a=ag < by =a1 < ..<b, =0} of [a,b] as tagged partition
{a;,b: 0 < i < n}. axis-parallel partition of R = I} [a;,b;] CR™is P = P, x ... x P, = I{a;; : 0 <
J<mi,a;=a;0<..<am, =Dbi}

(hyper)volume of R |R| := IIT(b; — a;). Norm of P ||P|| := maxi<i<n,1<j<m;{®i; — @i j—1}. @ IS
refinement of P iff P C Q. PWQ :=II% (P, UQ;) where P =1I"F;, Q = 11} Q;.

cube in R™ is a product of n closed intervals whose side length are all equal n-dimensional interval
(or cuboid) < a,b >= II} < a;,b; >, also define open, closed, right-open. right-open 2-adic cuboid
2%((j1, -, jn)T +[0,1)") where k, j1, ..., jn € Z for convenience in harmonic analysis.

domain connected and open

(VR™ 5 U open)(IH{E;};° € R")U = | | E; where E could be any h-cube or always pick 2-p
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h-interval?. Moverover, if m(U) < oo, then (In € N\m(UA |} I;) < e.

(1)(For n > 1, the result not holds) Every open set in R is a countable disjoint union of open
intervals.

(2)VG € R™ open, then G is a countable disjoint union of right-open binary cuboid (moreover for

open, closed, left-open YG € R™ closed cuboid).

Proof. (1)Va € U, define (az,bz) = U e(apcr(@ ), then U = U, cp(az,b2) = Uecountapic (@n, bn) since (i)if
z € (a,b) N (c,d), then (a,b) = (¢,d) = (ay,by) () f : {(az,b:)} — Q,(az,b;) — y for some y € (az,by)
injective.
(Lou Analysis)Prove for right-open 2-adic cuboid Let the collection of right-open 2-adic cuboids be D(R™). The
biggest advantages for it is (VA, B € D(R"))ANB=0VAC BV B C A. For any open V C R", for any z € V,
let A(z) be the largest set A in D(R™) s.t. x € A C V, then A(z) exists and is unique. Note for any x,y € V,
A(z), A(y) are disjoint or equal, so by there must be rational pt in A(x), get V =] A(z).

O

Theorem 3.6.3 (Vitali Covering Lemma)

(1)(finite) Let By, ..., B, be any finite collection of balls contained in an arbitrary metric space.
Then there exists a subcollection Bj, , ..., B;, of these balls which are disjoint and satisfy B U...UB,, C
3B;, U...U3B;,,

(2)(infinite) Let F' be an arbitrary collection of balls in a separable metric space s.t. R :=
sup{rad (B) : B € F} < oo where rad (B) denotes the radius of the ball B. Then there exists a
countable sub-collection G C F' s.t. the balls of G are pairwise disjoint and satisfy Ugcp B € Upeg 5C-

And moreover, each B € F intersects some C € G with B C 5C

Proof. (1)WLOG assume n > 0. Let Bj, be the ball of largest radius. Once {B;,}¥_; are chosen, if there is

i be such ball with maximal radius, o.w. set m =k

some ball in By, ..., B,, disjoint from |_|i.€:1 B;,, then let B;
and terminate.

VB;, there exists the smallest 1 <k <m s.t. B; N Bj, # (), then B; C 3B;, .

(2) O
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4 General Topology

4.1
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5 Basic Analysis

5.1 Measure Theory

Sobolev space, Radon measure, Hausdorff measure

5.2 Integration and Differentiation

5.3 Complex Analysis

Holomorphic and meromorphic function, conformal map, linear fractional transformation, Schwarz’s lemma
Complex integral: Cauchy’s theorem, Cauchy integral formula, residues

Harmonic functions: the mean value property, the reflection principal, Dirichlet’s problem

series adn product developments: Laurent series, partial fractions expansions, and canonical products
Special functions: Gamma function, Zeta function, elliptic function

Basics of Riemann surfaces, Riemann mapping theorem, Picard theorem

5.4 Measure

Definition 5.4.1 (measure)
For set X, M C P(X), a (positive) measure on (X, M) is p: M — [0, 0] s.t.
Ou®) =0
(2)(countably additive of disjoint) (V{E;}{° C M) |I;" B € M — u(U° Ei) = D0 u(Es).
Then call (X, M, 1) measure space.
(1)A content on (X, M) is (finite additive) (2)A premeasure is a measure on a semiring, i.e. M is
a semiring.
(3)A outer measure on X is p : P(X) — [0, 00] s.t.
DOWEN® € M, F € M)F C U Er € M - u(F) < 552 u(Ey).
(4)A signed measure on (X, M) is pp: M — R s.t.
OOWENE € MLE B € M = u(U° B) = S u(Ex) where $2° u(E) converges abso-
lutely if p(UJ;~ E;) is finite
®-3IE,F € M(u(E) = 0o A u(F) = —00).
(5)A complex measure on (X, M) is p: M — C s.t.
G®W{E}IP CMTE € M = wUT E) = 57 w(E;) where Y 7° u(E;) converges abso-
lutely.

Remark 5.4.1

(1)Generally speaking, a measure usually is defined on a o-algebra. We adopt this notion below for
convenience. So are signed measure and complex measure. And define measurable space is (X, X) where
Y is a o-algebra on X.

(2)We will see the extension of a measure, measure on semialgebra = measure on algebra = outer
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measure = measure on sigma-algebra = complete measure. Also we will see the decomposition of a
measure, complex measure = signed measure = positive measure.

(3)For outer measure, note (3) can be replaced by monotone and countably subadditive.

(4)For signed measure, absolute convergence in (4) is for rearrangement while (9) is for avoiding the
undefined —oco + 0o, note 0 - co = 0 in measure theory.

(5)For complex measure, u(()) = 0 is redundant since () = u(0) + (@) — w(®) = 0 holds in C.
(6)

Definition 5.4.2 (classification of measure and set)
(A)For measure space (X, M, u),
(Dp is
(i) finite iff p(X) < oo.
(il)o-finite iff (3{E;}° C M)X = E; A (Vi)u(E;) < oo.
(iii) semifinite iff (VE € M)(u(E) =00 — (3E D F € M)0 < pu(F) < 00).
(iv)complete iff (VE € M)(uw(E)=0— (VE D F € P(X))F € M).
(v)saturated iff every local measurable set is measurable.
(2)A is
(1) (u-)measurable o.w. nonmeasurable iff A € M.
(ii) locally measurable iff (VE € M)(u(E) < o0 - ANE € M).
(iil) (u- )null set iff A€ M A u(A) =0.
(iv) (u-)almost everywhere ((u-)a.e. for short) iff A° is a null set.
(B)For topological space (X, 7) and measure on o-algebra ¥ C P(X),
(D)mu is
(1) locally finite iff (Vz € X)(Fzx € E € L)u(E) < co.
(ii)inner regular (resp. outer regular) iff every measurable set is inner regular (resp. outer
regular).
(iii) regular iff p is inner regular and outer regular.
(2)A is
(i)inner regular (resp. outer reqular) iff A € ¥ A p(A) =sup{u(F): F C A, F € ¥, F compact}
(resp. A€ XA u(A) =sup{u(G) : GO A FeX FeT}).

Remark 5.4.2

(1)For sigma-finite measure, we have a trick to only consider the “local part” of finite measure.
E.g. pick Lebesgue measure E C R, then we can consider the property of £ N|[0,1] since R = |J[¢,4 + 1],
which can usually be the reason of “wlog assume F is bounded”.

(2)For outer measure p, A C X is p-measurable (or Carathéodory measurable) iff (VE C X)u(E) =
u(E N A)+ p(E N A°). Note it is equivalent to (VE C X)u(E) > u(E N A) + u(E N A°).

And after giving the Lebesgue measure definition, measurable usually means Lebesgue measurable.
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2)

For signed measure v on (X, A), then E € A is positive (resp. negative, null) for v if (VF € ANF C
E)v(F) > 0 (resp. v(F) <0, v(F) = 0) We shall see “every signed measure can be represented in either
of these two forms”: (i)v = p; — o where uq, o measure on A and at least one of them is finite (ii)u
measure on A, f: X — [—00,oc0] measurable function s.t. at least one of [ fTdu and [ f~du is finite

(extended p-integrable function), then v(E) = [, fdu is a signed measure ()

Proposition 5.4.1
For measure space (X, M, u),
(1)(monotonic) (VE,F € M)E C F — u(E) < pu(F).
(2)(countably subadditive) (V{E;}3° C M)u(U E:) <> u(E;).
(3)(continuous from below) (V{E;}° C M)((Vi)E; C Eir1 — pu(UJ E;) = im0 p1(E5))-
(4)(continuous from above) (V{E;}5° C M)((Vi)E; 2 Eiy1 A BN)uw(En) < o0) = p(NE:) =
lim; o0 (E3)).
(5)(Borel-Cantelli Lemma){E;}3° C M, if (3N) Y% u(E;) < oo, then pu(lim E,) = 0.

Proof. (5)Note im E,, = (), Uro_, Em C U, Em, so p(lim E,) < >°>°_ 1u(E,,) by countable subadditiv-
ity, then note lim, oo > o p(Ey) =0 by (3N) SN u(E;) < oo. O

Remark 5.4.3

(1)The condition (IN)u(En) < oo of continuous from above is necessary, e.g. (N,P(N),|-]|) and
E;={n:n>i}.

(2)Signed measure is NOT monotonic and countably subadditive but continuous from below and
above.

(3)By continuity from below and above, get u(lim E,,) < lim u(E,) and lim pu(E,) < p(lim E,,) if
@V B < oo.

Lemma 5.4.2 (for extension)

(1)For BC P(X) s.t. 0,X € B, p: B — [0,00] s.t. p(@) = 0, then p*(A) := inf{> " p(E;) : E; €
B,AC " E;} is an outer measure.

(2)For outer measure p* on P(X), M of p*-measurable sets, written C, is a o-algebra, and p*| ¢ is
a complete measure.

(3)For measure g on M, let M := {EUN : E,F € M,u(F) = 0,N C F}, then completion

7i: EUN — p(E) is unique extension of y to a complete measure on M.

Proof. (1)Suffice to show countable subadditivity. V{4;}5° € P(X),e > 0, note for each i, I{EF}2, C B s.t.
AC U, EF and 3502 p(EF) < p*(Ai) + €277 Hence p*(JAy) < 32, 5, p(EF) < 300" (Ai) + e

(2)Suffice to show countable union and additivity. For disjoint {4;}3° € M and E C X, let B, = UTA4;
and B = U°4;. By induction, p*(E) = p*(EN B,) + p*(EN BS) and p*(EN By,) = > 7 u*(E N A;), then
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WH(E) > S0t (E N A) + ut (B0 BY). Let n — oo, j*(E) > S u(B 1 A) + u*(B 1 BY) > p (UZ(E
A))+ p(EN B = u*(ENB)+ p*(EFNB° > p*(E). Hence pu*(F) = p*(E N B) + p*(E N B¢, and
YU (ENA) =p (UT(ENA;)) then let E = B. O

Theorem 5.4.3 (Carathéodory’s Extension Theorem)
For premeasure po on semiring S C P(X), Ju on X(S) extends pg. Specially, if pg is o-finite, then

the extension is unique.

Proof. jig on 8 = pf on P(X) = p:= pgle on C = plss). To prove the uniqueness, it suffices to show “if v
is another measure on C that extends po, then (VE € M)v(E) < p(E) with equality when p(E) < 0o”.

By E €C,if E C |J]°A; where 4; € S, then v(E) < > " v(4;) = Y77 po(A;), get v(E) < uy(E) = p(E).
If 4(E) < oo, then Ve > 0, there is A := (J{° 4; O F where 4; € S, u(A) < pu(E) + ¢, hence u(E) < p(A) =
limy, o0 (U] Ai) = limy oo (U] Ai) = v(A) =v(E) + v(A\ E) <v(E)+ u(A\ E) < p(E) + e O

Definition 5.4.3 (product and section)
(1)For o-algebra ¥; on X; where i € I, X = [],;
o-algebra on X is E({m; ' (E;) : (Vi)E; € %;}), written &, ; ;.

X;, coordinate map 7; : X — X;, the product

(2)For measure space (X;, M;, u;) where 1 <14 <n,
(i)a (measurable) rectangle is Ey X ... X E, where E; € M, is side of E. Note the algebra it
generates is A := {| [/, El x ... x EJ : El € M;} and the o-algebra it generates is ) M,.
(i« L5, El x ..x Ej — Py | i (E7) is a premeasure on A, then induces a measure
on @ M, denoted by product measure py X ... X fi,.
(3)For E C [[;c; Xi x [[;¢,Y;, function f on [[;c; Xi x [[,c, Y, then T-section (resp. y-section)
of Bis Bz = {y € [[;c,Y; : (Z,9) € E} (vesp. EY), T-section (resp. §-section) of f is fz(y) = f(T,7)

(resp. fY).

Remark 5.4.4
(1)Note the product o-algebra has associativity ®3M; = (M; ® M) @ Ms, but the product

measure NOT. However, note if u; is o-finite for all ¢, then v is o-finite hence the extension is unique,

SO pu1 X po X pug = (p1 X p2) X pig.

Proposition 5.4.4

(1)For |I| < wy and o-algebra ¥; on Xy, @,c; X = M({[[;c; Bi : Es € X4}).

(2)If B; = £(B;), then ®,; i = L(F == {m; '(E;) : E; € B;}). Specially, if |I| < w; and X; € B;,
then ®,c; Zi = X({[Lic; i : Ei € Bi}).

(3)For metric spaces {X;}7, X = [[] X; with product metric, then @ B(X;) C B(X). Specially,
if X; is separable for all 4, then @7 B(X;) = B(X).

4If E € M@ N, then E, € N for all z € X and EY € M for all y € Y. Moreover, if f is
M ® N-measurable, then f, is N-measurable for all x € X and fY is M-measurable for all y € Y.
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Proof. (1)Note m; (E;) = [T, je; X5 X Ei and [[;e; Bi = iy 7 (E).

(2)Note m; '(E;) € ®,c; i where E; € B;. On the other direction, fix i, {E C X; : m; '(E) € £(F)} is a
o-algebra on X; that contains B; and hence ¥;, so 7TZ-_1(E) € X(Fy) where E € %;.

(3)Suppose C; is a countable dense set of X;, let B; be the collection of balls in X; with rational radius and center
in C;. Note any open set in X; is a countable union of elements of B;, any open set in X is a countable union
of balls with rational radius and center in []C;. So by the above, Q] B(X;) = S({I] E; : E; € B;}) = B(X).
(4)Let R={E € X xY : (Va)E, € N, (Vy)EY € M}, note R contains all rectangles and is a o-algebra since
(U By)a = U (E;), and (E%), = (E,)°, R. SoR D M@ N.

Then note (f,)~*(B) = (fY(B))a. O

Example 5.4.1 (Lebesgue measure)

Bl B <w
(1) Counting measure is p on (X, P(X)) s.t. p: E — .
00 o.w.

1 2z€eFE
(2) Dirac measure at x € X is 0, on (X, M) s.t. 65 : E — .

0 ow.
3)For topological space (X, T), Borel measure is any measure on Borel measurable space (X, B(T) =

(

B(X) := X(T)) where the elements of B(T) are Borel (measurable) sets.

(4)For g : R — R increasing and right continuous, then 3 a unique measure on B(R) s.t. (Va <
b)pg((a,b]) = g(b) — g(a), whose completion is written 1, on B(R) called Lebesgue-Stieltjes measure
associated with g.

(5) Lebesgue measure m on L(R™) := @} B(R) is pg X ... X yg where g(z) = x.

(6)Radon measure is a Borel measure s.t. X is Hausdorff, p is inner regular and locally finite.

Remark 5.4.5
(1)For B(X), we should point out the topology on X first, but usually for X = R™, just pick the
topology induced by 2-norm.
(2)For Lebesgue-Stieltjes measure,
(i)Well defined
(a)Premeasure o (LI} (a5, b;]) = >=719(b;) — g(a;)]
(DFunction: If | |(a;,b;] = (a,b], then after relabeling the index, get a = a; < by =
< oo < by = b, 50 Y1 (g(b;) — g(a;)) = g(b) — g(a). If h-intervals ||} I; = |I]" J;, then >, po(L;) =
2o ro(li N Jy) =325 po(J;).

(@Countable additivity: V{I;}{° h-intervals, wlog assume | |[; = I = (a,b]. By
po(I) = po(Lly L) + po(I \ LT Li) > po(LIy L) = D7 po(Z;), then let n — oo. If a,b is finite hence
assume I; = (aj,b;], then Ve > 03§,8; > 0 s.t. g(a+ ) — gla) < €,g(b; + ;) — g(b;) < €277. Note
[a + 8,b] C U (aj,b; + d;), by Heine-Borel, po(I) < D77 po(I;) + 2, then let € — 0. O.w. a = —oc or
b = oo, show > po(l;) = 0.

(b)note {(a,b] : —oo < a < b < oo} (strictly speaking, (a,o0] € R, so it should be replaced
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by h-interval (a,b],(a,00), where co < a < b < o0) is an algebra, then use Carathéodory Extension
and o-finite premeasure.
w((0,z]) >0
(ii)Conversely, if © on B(R) is finite on bounded Borel sets, then F(z) = 0 z=0
—pu((==,0]) =<0
is increasing, right continuous and u = pp. Specially, if u(R) < oo, then distribution function F(x) =
p((—o0, x]), which differs from above by the constant u((—oo,0]).
(iii)Moreover, Lebesgue-Stieltjes measure < a complete and regular and o-finite Borel measure.
(3)For Lebesgue measure, it is the unique Borel measure which is translation invariant, is finite on
compact sets and attains 1 on the unit cube. (See bigrudin P50)
As to the condition “finite on compact sets”, it could be proved that “For o-compact LCH X,
if u is a positive Borel measure s.t. this condition holds, then p is regular”.(See bigrudin P48)
By regular, we can get that for E C R", E is measurable iff (3G € B(R™))(IV € R*Am(N) =0)G =
EUN iff (3F € B(R™))(N e R* Am(N)=0)E =FLN.
(4)A difference between B(R™) and L(R"™), is B(R"*™) = B(R")®@B(R™) while L(R"t™) #£ L(R™)®
LR™). So E,F e B& ExFeBwhile E,JF € L=< ExF €L, eg. E isLebesgue nonmeasurable

and I is a null set.

Proposition 5.4.5 (change-of-variable)
(1)For a complete, regular, o-finite Borel measure p on M = X(T), the followings are equivalent.
()E e M
(ii)(Ve > 0)FEC G e T)m(G\E) < ¢
(iii) (Ve > 0)(IE D F compact)m(E \ F) < €
(iv)BECGeGs)m(G\E)=0
(V)(3ED F e F,)m(E\ F) =0.
(2)For Lebesgue measure m,
(i) (translation invariant) under translation [, : R™ — R™ where a € R,
(a)If E € L(R™), then [,(E) € L(R™) and m(l4(E)) = m(E).
(b)If f: R™ D E — R is measurable, then fol,:[;'(E) — R is measurable. Moreover, if
f>0or feL'(m), then [, fdm = flgl(E)(fola)dm.
(ii)under linear transformation 7" € GL,,(R),
(a)If E € L(R™), then T'(E) € L(R™) and m(T(E)) = |det T|m(E).
(b)If f: R™ D E — R is measurable, then foT : T~}(E) — R is measurable. Moreover,
if f>0or feL'(m), then [, fdm = |detT| fT*l(E) foTdm.
(iii) (change-of-variables) under C! and injective ¢ : R D Q — R™ where  is open,
(a)If Q 2 FE € L(R"), then ¢(E) € L(R™) and m(p(E)) = [, |det oz |dm(z).
(DI QD E e L(R™) and f: p(F) — R is measurable, then f oy : F — R is measurable.
Moreover, if f > 0 or f € L'(m), then fs&(E) fdm = [, f o p(x)| det pg|dm(z).
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Proof. (2)(i)Suffice to show (a) for Borel sets, since Ym(N) = 03N C G € B(R") s.t. m(N) = m(G). Then mea-
surability holds for continuity, and m(l,(E)) = m(FE) follows for cubes for open sets by open-set-decomposition,
for Borel sets by regularity.

VE € B(R), (3F € B(R"))(IN € R" Am(N) =0)f"1(E) = FUN, then (fol,) Y(E) =" (F)Ul;}(N) € L",
i.e. fol, is measurable.

The latter of (b) holds for characteristic function by (a), for simple function by linearity, for nonnegative mea-
surable functions by MCT, for measurable functions by taking positive and negative parts.

(ii)Similarly, suffice to show m(T(E)) = |det T|m(E) for cubes. Note if m(T(E)) = |det T|m(E), m(S(E)) =
| det S|m(E) hold for linear transformation T, S, then m((T'o S)(E)) = | det T'||det S|m(E) = | det(T o .S)|m(E).
Hence suffice to show for three elementary linear transformation, for S;; interchange the order of integration in
x; and x; by Fubini, for M;(c), A;;(c) by linearity and (i).

(iii) Prove for the situation of “p, is invertible for all z € €2, similarly, suffice to show m(¢(E)) = [, | det ¢, |dm(x)
for cube E of side length 2a centered at 0. Denote || - ||oc by || - || below.

By E compact, know,

o] = maxs<s<n [25], |1T]] = maxi<icn 24 [T 51, we then have |[Tal| < |[T| |o]] and {a : o —al < A} is the
cube of .

Let Q = {z : ||z —a|| < h} be a cube in Q, by the mean value theorem, g;(z) — g;(a) = 3;(x; —a;)(0g/0x;)(y)
for some y on the line segment joining x and a s.t. [|[G(z) — G(a)|| < hsup,cq ||DyG||. In other words,
G(Q) is contained in a cube of side length sup, ¢ ||DyG|| times that of Q. So that by Thm2.44, m(G(Q)) <
(sup,cq 1Dy G||)"m(Q). If T € GL(n,R), we can apply this formula with G replaced by T~' o G together with
Thm2.44 to get m(G(Q)) = |det T|m(T~1(G(Q))) < |det T|(sup,eq ||T' Dy G|])"m(Q)

Since D,G is continuous in y, for all € > 0, (36 > 0)||(D.G) 'D,G||" < 1+¢€if y,z € Q and ||y — 2|| < 4.
Subdivide Q into subcubes @1, ..., Qn whose interiors are disjoint, whose side lengths are at most ¢, whose
centers are x1,...,2y. Apply above replaced by @; and with 7' = D, G, obtain m(G(Q)) < SVm(G(Q))) <
27| det Dy, G(supyeq, |[(De; G) Dy Gl")m(Q;) < (1 + €)2{|det Dy, G|m(Q;) This last sum is the integral
of X{|det D,,G|xq, (x) which tends uniformly on Q to |det D,G| as § — 0 since D,G is continuous. Thus,
letting & — 0, — 0, find m(G(Q)) < [, |det D, G|dx O

Theorem 5.4.6 (Littlewood’s 1st Principal)
(Every measurable set of finite measure is nearly a finite union of intervals)

For Lebesgue-measurable E C R™ with m(E) < oo, € > 0, there exists F' = | || I; where I; is cube
s.t. m(EAF) <e.

Definition 5.4.4 (measurable function)
(a)For measurable space (X, M) and (Y,N), f : X — Y is (M,N-)measurable iff (VE €
N)f~Y(E) € M. Specially,
(1)f : X - R™is (M-)measurable iff f is M, B(R™)-measurable.
(2)f : R™ — R"™ is Borel measurable iff f is B(R™)-measurable.
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(3)f : R™ — R™ is (Lebesgue) measurable iff f is L(R™)-measurable.

By considering C as (R?, B(R?)), generalize the measurable into C; note X({(a,00] : a € R}) =
Y(T ({[~00,a), (a,] : a € R})), by considering R as (R, X({(a, 00] : a € R})), generalize the measurable
into R.

(b)positive part (resp. negative part) f+ :=max(f,0), f~ := max(—f,0)

[l = £+ + f for real-valued, |f] = /TR )2+ (3 T2 (note |f] < R |+ IS f1 < 2I]) (c)Simple
function on E € M is Y.} a;xg, where a; € Rt U{0}, E; € M and ||} E; = E.

Remark 5.4.6

WARNING: complex measurable function = real measurable function = nonnegative measurable
function = simple function = measurable characteristic function = measurable set = Lebesgue =
Borel+Null set(controlled by Borel) = Borel = open = interval with rational center and radius. WARN-
ING: we usually define or prove for real-valued, then most of them could be generalized to extended-

real-valued, complex-valued and vector-valued.

Proposition 5.4.7
(D)If N = X(B), then f: X — Y is (M, N)-measurable iff (VE € B)f~1(E) € M. Moreover,
(O)If f : X = Y is continuous wrt. Tx, Ty, then f is B(X), B(Y)-measurable.
(i) f : X — R is M-measurable iff (Va € R)f~1((a,)) € M.
(2)For measurable spaces (X, M), {(Yi, M) }ier, ¥ = [[Yi, N = QN;), coordinate maps m; : Y —
Y;, then f: X — Y is M, N-measurable iff f; := m; o f is M, N;-measurable for all i € I.
(i)f : X — C is M-measurable iff ® f, S f is M-measurable.
(3)For R-valued measurable {f;}$° on (X, M), sup fi(z),inf f;(x),lim f;(z), lim f;(z) is measurable.
(PE. (sup £3)((a,00]) = U £ ((a, 00)), (inf i)~ ((a, o0]) = 1 £ ((a, o0])) Specially, i £(z) = lim f(z)
exists for all z € X, then f measurable.
(i)For measurable f, g, max(f, g), min(f, g), f*, f~ is measurable.

(4)For E C X, xg is M-measurable iff E € M.

Exercise 5.4.1

(1)For M-measurable f,g: X — R, show that f + g, fg is M-measurable.

(2)For measurable F; C R™, FEy C R"2, Carathéodory function f : By x Ey — R™ st. fY is
measurable for all y € E5 and f, is continuous for all x € FEq, if g : £ — FEs is measurable, then

x — f(z,g(x)) is measurable.

Proof. (){f+g>a} =U,co{f >7r}N{g>a—r}). For fgis measurable, give two methods:
(i{fg > c} = Ua,bEQ+7ach({f > a} N{g > b}) UaeQﬁbthGbZC({f < a}nN{g > b}) Uae@tbe(@—ﬂbzc({f >

a} N {g <bH) Uapeq-av>({f <ajn{g <b}).
({)F: X - RxR,z — (f(z),9(z)) is M, B(R?) = B(R)®B(R)-measurable by 5.4.7(2), ¢ : RxR — R, (z,y) —
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zy is B(R?), B(R)-measurable by 5.4.7(1)(i).
(2)Pick simple ; — ¢ pointwise, assume @; = 1 a;jxa,, then z — f(z, ¢;(x)) is measurable since (f (-, ¢;(+))) " (E) =
T((f4)"HE) x aj). So f(z,¢(z)) =lim f(z, ;(z)) is measurable. O

Theorem 5.4.8 (for completion)
(1)The following holds iff y complete:
()If f is measurable and f = g u-a.e., then g is measurable.
(ii)If f,, measurable for n € N and f,, — f p-a.e., then f measurable.
(2)For measure space (X, M, u) and completion (X, M, i), if f is M-measurable, then 3g is M-

measurable s.t. f = g @-a.e.

Proof. (2)Pick simple ¢,, — f pointwise, let ,, be M-measurable simple function with v,, = ¢, except on a
set F, € M with ji(E,) = 0. Choose N € M s.t. u(N) =0 and N D U¥E,, let g = lim x x\N%n, then g is
M-measurable and g = f on N€. O

Example 5.4.2 (Cantor set)
Cantor set C
(1)Construction:
(1)C = {37 a;377 : a; € {0,2}} (base 3 expression, easy to see |C| = R; and every pt is
accumulation pt)
(1i)C = 10,1\ Uy~ 2161(?3’2111, SE£2) = [0, 1\ 02, Ui:gl I} (easy to see closed)

(iii)remove (easy to see no interior pt and m(C) = 0)

(2)Property:
BIC] =R, m(C) =0
Cor. Since Lebesgue measure is complete, [£] > |P(C)| = Ny > X = |Bg|, so there exists a
Lebesgue measurable but not Borel measurable set.
(ii)Stone(compact(bounded closed) totally disconnected Hausdorff), every pt is boundary pt(no
interior pt(nowhere dense(meagre))) and accumulation pt(isolated pt(perfect))
Pf. For totally disconnected, Vo < y € C note (3z < z < y)z ¢ C,sox € [0,2) N C,y €
(2,1] N C then totally separated hence totally disconnected.
(iii)Generally speaking, a perfect totally disconnected subset on R is homeomorphic to C.
(3)Generalization:
(i) Generalized Cantor set K = (" K; where K = [0,1], K is obtained by removing the open
middle-a; (0 < oj < 1) from each of the intervals that make up K;_;.
(@)m(K) = limo [T} (1 - )
(b)Stone(compact(bounded closed) totally disconnected Hausdorff), every pt is boundary
pt(no interior pt(nowhere dense(meagre))) and accumulation pt(isolated pt(perfect))
(c)Usually replace middle-a; by a377 (0 < v < 1), then m(K) =1 — a.
(ii) Cantor dust [T} C
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(a)(Vxz € [0,2))(Fa,be C)z =a+b
(b)Compared to Steinhaus, [—1,1] € C — C while m(C) =0

= a; = 2a,;
4 N 2%
> 5 ¥ > 3 € c
(iii) Cantor function c : [0,1] — [0,1],x — 1 1 is notorious coun-
sup c¢(y) o.w.
y<z,yeC
terexample for continuous but not absolutely continuous function.

Pf. increasing + surjection — continuous. By m(C) = 0, V6 > 03IM3Ixy < yx € [0,1]

where 1 <k < M s.t. Ziw(yk — ) < 0 and Ziw(c(yk) —c(xg)) = 1.

Lemma 5.4.9 (cube approximation)
For measurable £ C R™ with m(E) > 0, 0 < A < 1, there exists a cube I s.t. Am(I) < m(I N E).
Moreover, there exists E C [0, 1] with m(E) > 0 s.t. Vinterval I C [0,1], 0 <m(ENI) <m().

Proof. Regular measure + open decomposition + pigeonhole principle.

Let M be the set of closed intervals in [0, 1] with rational endpoints, note M is countable so denoted by {I;}{°.
Let X is CTDP mean X is a compact totally disconnected subset of [0, 1] that has positive measure.

Claim VI € M3CTDP A C I st. (3J € M)J C I\ A, it holds with generalized Cantor set. Construct
{4;}3°,{B;}5° as follows:

(i)By Claim, 3ICTDP Ay CI,,M > J C T\ Ay, then 3CTDP By C J. Hence get Ay, By C I; are disjoint and
CTDP.

(ii)Once {A;}7~1, {B;}7~! are chosen, note |J} " (4;UB;) is CTDP, so 3M 3 J C I,\C,,. Similarly, 34,,, B, C
J C I, are disjoint and CTDP.

Let E = (J;° 4;, then Vinterval I C [0,1], 3M > I,,, C I. Hence A,,,B,, C I, 0 < m(A,) < m(ENI) <
m(ENI)+m(Bp) <m(). O

Theorem 5.4.10 (Lebesgue’s Density Theorem)

Y

(For Lebesgue measurable A C R™, the “boundary” is negligible. The “density” of A is 0 or 1 at a.e. pt
in R™)

VE C R, m*(EAG(E)) = 0 where ¢(E) = {x € R : limy,_,o T EAEhth]) _ 43

Proof. Suffice to show m*(E\ ¢(E)) = 0 for ¢(E)\ E = E°\ ¢(E)¢ C E°\ ¢(E°). WLOG assume E is bounded.
Note E\ ¢(E) = ;" A,, where A, = {z € E : lim,_,, w <1-1},VA:=A,Ve>03A C G open
s.t. m(G) < m*(A) + e

Va € A, pick an open interval I with rational endpoints s.t. @ € I € G and m*(EN1I) < (1 — L)m(I), which
gives a countable cover of A. Note m*(A) < m(U7" In), so AN € N)m*(A) —e < m(U,<y In). By Vitali
Covering Lemma, there exists disjoint subcollection {1, }72; s.t. U<y In © Ujcp, 3In,, let X = |;<,, In,
then m*(A4) —e <m(U,<,, 3Ln;) <33 <, m(In;) = 3m(X).

Note m(X) — e = m(G) —m(G\ X) —e < m"(A) —m*(A\ X) < m"(ANX) <> .., ,m(ANIL,;) <

djemm I (ENLy) <30, (1— Lym(I,,) = (1 — 2)m(X), so m(X) < ne then m*(A) < ¢(1+ 3n), let € — 0

js<m
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get m*(A) = 0. O

Theorem 5.4.11 (Steinhaus)
For measurable E C R™ with m(E) > 0, (30 > 0)B;(0) C E—-FE

Proof. Give two method:

(A)By Lebesgue’s Density Theorem, Je € E N ¢(E), pick ¢ = % > 0 then 39 > 0 s.t. %?5]\@ < e
Vo e [-3,3], note m({y € [e— S, e+ 3]y ¢ B}) <20e and m({y € [e — 3,e+ §] : 2+ y ¢ E}) < 28¢, hence
m({yele—%.e+8l:yeE,a+yeE})>6—40e>0. So [-5,8]C E—E.

(B)By cube approximation, 31 with 3m(I) < m(I N E). Suppose not, then 3|z| < # st. EN(E+z) =10,
hence (INE)N((INE)+z) =0. So 3m(I) < 2m(INE) =m((INE)N((INE)+z)) <m(IN(I+z)) < 3m(I),

contradiction. O

Theorem 5.4.12 (Vitali)
For E C R with m*(E) > 0, there exists Lebesgue nonmeasurable F' C E.

Proof. WLOG assume E C [0, 1]. By Choice, let V be the set of representatives of elements of £/Q. Suppose
V' is Lebesgue measurable, then oo x m(V) = m(,cqni—1,1y(V + 1)) < m([-1,2]) <3 = m(V) = 0, hence
m*(E) < m(,eqn-1,1(V + 1)), contradiction. O

5.5 Integration

Definition 5.5.1 (modes of convergence)
For measurable E, {f,,}$°, f, the mode of f,, — f on F is
(1)a.e. (pointwise) iff u({x € E : (I > 0)(VN € N)(3n > N)|fn(x) — f(z)| > €}) = 0.
(2)uniformly iff (Ve > 0)(AN € N)(Vn > N)(Vz € E)|fn(z) — f(x)] <e.
(a)compact uniformly iff (VE 2 K compact) f,|x — f|x uniformly.
(b)almost uniformly iff (Ve > 0)(3E 2 Ec € M A u(E) <€) fnlp\e. — flg\p. uniformly.
(3)in LP iff (Ve > 0)(3N € N)(Vn > N)([g |fn — fIPdu)7 < e.
(4)in measure iff (V§ > 0)(Ve > 0)(IN € N)(Vn > N)u({z : |fn(z) — f(2)] > €}) < e

Remark 5.5.1

(1)WARNING: There’s an annoying point that in all this definition above, we need f,,, f to be finite
a.e. (probably only a.e. pointwise not need, so if we write f, — f (except a.e.), it imply the condition
finite a.e.), then these definitions are on X \ EJ;" E,, where f, is finite on X \ E, and f is finite on
X\ E.

(2)Note “a.e.”, “in LP” and “in measure” are relevant to the measure p we pick, usually it is Lebesgue
measure m.

Note that convergence of almost uniform NOT means that the sequence converges uniformly a.e. as
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might be inferred from the name.
(3)It will be useful to keep in mind the following examples on R:
(D) fn =" Xo,n) (D) fr = Xinng1) (i) o = 1X[0,1/n] (V) fr = X[, i1 where n = 2% + j with
0<j<2k
f — 0ae. (i)(ii)(iii); f — 0 uniformly (i); f — 01in L* (iv); f — 0 in measure (i)(iii)(iv). Note (iv)
NOT converges for any = € [0, 1].

(4)To interchange V and a.e., it need the underset of V is countable.

Theorem 5.5.1 (inequality)
(1)(Linearity) For f,g € L*, c € R, then [(f+cg)= [f+c[g.
(2)(Triangle) For f € L', then | [ f| < [|f], equality holds when exists a s.t. af = |f] a.e.
(3)(Monotone) For f,g € L', f < g, then [ f < [g.
(4)(Chebyshev) For A > 0, u({|fn — f| = A}) < % [ |fn — fldp.
(5)(Hélder) For conjugate exponents p,q, f € LP, g € L9, then fg € L™ and |[fg|lx < ||fllpll9llq;
equality holds when exists «, 8 € [0, 00) not all zero s.t. «|f|P = B|g|? a.e.
(weighted) Specially, for conjugate exponents p,q, f € LP, g € L9, nonnegative w € L', then
| [ fow| < ([ |f1Pw)? ([ |gltw)s
Moreover, for conjugate exponents p, ¢, measurable f, then ||f||, =superq, llglla=1 [ fg.
(6)(Minkowski) For p € [0,00], {fn}7* C LP, || 37" fallp < 21" 11fnllp, equality holds when exists
ay, € [0,00) not all zero s.t. a, f? equals a.e.

(7)(Jensen) For convex 2, convex ¢ : @ — R, m(E) < oo, L' > f : E — Q, then o(

5y Ju F) =

Proof. (5)Let A = ||f|lp,B = |lgllq, assume AB # 0 ow. f = 0 ae. or g = 0 a.e. By Young, f% <

JGr + 15 =1

(6)Let F = | 37" fo|P~! and g be the conjugate exponent of p, then [ | > fulP < [FY 7" [fil < 7S Fq)é(f |fk\1’)%
m _1 m 1

SIS fal?) 7 20 [ fal?)

(7)Note 1o := ﬁ Jp f€Q, 0w by convex Q, In € Qs.t. (VyeQ) <y—yo,n><0since {<y—yo,n >:

y € Q} is open, then < yg,n >= ﬁ [ < f(@),n>dm(z) << yo,n>.

By convex ¢, Iy € Q st (Vy € Q)p(y) > @(yo)+ < 7.y — yo >, then o [ o f > i [p(e(yo)+ <

7, f (@) —yo >)dm(z) = ¢(yo). O

Remark 5.5.2
f € L', then [|f||1 is absolutely continuous, i.e. (Ve > 0)(30 > 0)(VE D w € M Ap(w) <9) [ |fldu <e.
Specially lim ;s o0 fsz | fldp = 0.

Pf. Exists increasing simple function ¢, — |f| pointwise, then limp>,en uw)—o+ [, |f]

mEQuEM,p(w)%O* fw(|f| — ¢n) +EEQ,U4€M,;L(UJ)~>O+ fw on < fE(|f| —n) = fE | £l = fE ©n, let n — 0o
and by MCT.
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Theorem 5.5.2 (Convergence)
For measure space (X, M, u)
(1)(Monotone Convergence Theorem (MCT for short)) For nonnegative measurable {f,}° and
fn < fas1,¥n > 1, ae. z € X, then [lim,yo0 fr, = im0 [ fn.
(for series) For nonnegative measurable {f,,}5°, then [ >0 fr, => 0% [ fa.
(2)(Fatou) For nonnegative measurable {f,}$°, [(lim, . fn) <lm, ., [ fn.
(3)(Dominated convergence Theorem (DCT for short)) For measurable {f,}5°, g € L! s.t. |f,| <
g,Vn>1,ae z€X,if f, » f ae., then f € L' and [ f = lim,_e0 [ fn.
(for series) For {f;} C L' s.t. Y7° [|f;| < oo, then >°7° f; is absolutely convergent a.e. and
DI e DV i
(corollary of DCT and Riesz) For measurable {f,}3°, g € L' s.t. |f,| < g,Vn > 1, ae. x € X,
if f, — f in measure, then f € L' and [ f = lim, 00 [ fn-
(4)(Egorov; Littlewood’s 3rd Principal)
(Every convergent sequence of functions is nearly uniformly convergent)
fn— fae on B+ pu(E) <oo+ f<ooae = f, = f almost uniformly on E.
(5)fn — f uniformly = f, — f almost uniformly = f,, — f a.e. + f, — f in measure.
(6)(Riesz) f, — f in measure = (H{fn, } S {fn})fn, = [,k — o0 ae.
(corollary of Egorov and Riesz) For p(E) < oo, measurable f,, f < oo a.e., then f, — f in
measure iff (V{fn 1} S{fn}) FH{frri S {for}})fori — f,i— 00 ae.
(1) fn — fin L' = f, — f in measure.
(8)If sequence {f,,} of measurable functions is Cauchy in measure, i.e. (Ve > 0) limy, o0 n—oo ({2 :
|fn(z) = f(z)| > €}) =0, then 3f s.t. f,, — f in measure. Moreover, if f,, — g in measure, then g = f
a.e.

(Vitali Convergence Theorem)

Proof. (1)WLOG assume f,, < fn11,Yn > 1Vz € X since m(U,—{fn > fat+1}) = 0, (Trick: for measurable,
integrable and integral etc., there’s no difference of a.e. and pointwise) and f(x) = lim,, o fn(x) exists in R.
For each n > 1, pick an increasing sequence {p, ;}3° of simple functions s.t. ¢, ; — min{f,,n} pointwise.
(Trick: use cutoff function to approximate oo)

Let ¢, = maxi<i<n{®in}, then {¢,}3° is an increasing sequence of simple functions and ¢, — f pointwise.
Note if MCT holds for simple function, then f > f, > ¢,,so [ f=1lim [ f >lim [ f, > lim [ ¢, = [ f.
Suffice to show (Vf > g simple)lim [ ¢, > [ g, fix 0 < ¢ <1 and let E,, := {¢,, > cg}, hence {E,} is increasing
and X =JE,. So [ ¢, > fEn On > cfEng, then let n — oo and ¢ — 1.

(2)By MCT, [(lim f,,) = limy, oo [(infr>p fi) < lim,_yoo infir>,, [ fr = lim [ f,.

(3)Trivial for f and f € L'. By Fatou, [ g+ [ f <lim [(9+ f,) = [g+lm [ f, and [g— [ f <lim [(g— fn) =
Jg—Tm [ f,.

(4By fo = f ae, p(UZy Nivmy Urew B{Ife = f1 2 %}) = 0. So limy—oc UpZy E{Ifc — f| = %} = 0, then
Ve > 0Vi > 13N; > 1st. p(Upen, E{Ifx — f1 = 1}) <27, let F = E\ U2, Upew, E{|fr — f1 = 1}.

(6)By fr. — f in measure, then pick subsequence { fy, } s.t. m(E{|fx; —f| > %}) < 5. Let Ey = U;’;N E{|fx;, —
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f1 =1}, F=Ny_, En, note {Ex} monotone decreasing and m(Ex) < 55— so m(F) = 0.
Ve e E\ FAN >1st. x ¢ Eyie (Vj> N)|fy,(z) = f(z)] < %7 get fr, — f pointwise on E\ F.
(8)Pick subsequence {fn;} s.t. pu(Ej := {|fo; = gn,s| > 277}) <279, Let Fy = ;2 Ej and F = (" F}, then
lim fp,, (z) =€ F°
pw(Fr) <2'7% pu(F) = 0 and {f,,} is pointwise Cauchy on Ff. Let f(z) = ' , then g; — f
0 zeF
in measure.

Hence f,, — f in measure, since {|fn — f| > €} C {[fn — fu,| = 2} U{|fn, — f| = 2€}. And f =g a.e., since
{lo—f1= e {If = fal = 3} U{Ifn — 9] = 3¢}
O

Theorem 5.5.3 (Function Approximation)

(1)For nonnegative measurable f, there exists an increasing sequence {¢, }$° of simple function s.t.
@ — f pointwise and ¢,, — f uniformly on any set on which f is bounded.

(2)f € L' (), e > 0, there is an integrable simple function ¢ = Sa;xg, st. [|f —¢| <e If pis
a Lebesgue-Stieltjes measure on R, then ¢ could be finite; moreover, exist continuous g with compact

support ||f —g||rr <€

Theorem 5.5.4
If f € L'(m) and € > 0, then 3 simple ¢ = E{Vaijj where R; is a product of intervals s.t.

JIf = ¢| < € and 3 continuous g that vanishes outside a bounded set s.t. [ |f —g| <€

Proof. In thm above, approximate f by simple functions, then use above (iii) to approximate the latter
by function ¢ of the desired form. Finally, approximate ¢ by continuous function by applying an obvious

generalization of thm above O]

[Lusin; Littlewood’s 2nd Principal] (Every measurable function is nearly continuous)

For measurable E C R", f : E — R, then f is measurable iff (Ve > 0)(3E 2 F closed)m(E\ F) < €
and f|p is continuous.

=: WLOG assume E is bounded o.w. consider E N {k —1 < |z| < k} and pick e27%. By
Simple Function Approximation, 3¢, — f pointwise where {(, }° is an increasing sequence of simple
functions. Ve, = Zf\;"l On; XE,, 3En, 2 Fp, closed s.t. m(En, \ Fp,) < 277", let F,, = Uf:”l F,, then
m(E\ F,) < e2™".
By Egorov, (3E 2 F, closed)m(E\ Fy) < € and ¢,, — f uniformly on Fy. Let F = (", F, then E O F
is closed, m(E \ F) < 2¢, p,|F is continuous hence f|r is continuous.
<: VYn € NIE D F, closed s.t. m(E \ F,) < % and f|p, is continuous. Let H = UZOZI F,, then H is an
F, set hence measurable and m(E \ H) = 0.
VaeR, {f >a}=U,_{z €F,: f() >a}U{x € E\ H: f(z) > a}. Note {z € F,, : f(z) > a} is
relatively open wrt. F,, hence measurable, {z € E\ H : f(x) > a} is a null set hence measurable.

(3)(Uniform limit theorem)For topological space X, metric space Y, f,, : X — Y converge uniformly

to f: X =Y, if any f, is continuous, then f is continuous.
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Pf. d(f(z), f(y)) < d(f(2), fn(2)) + d(fn(2), fn () + d(Fn (), £(y)-

(Dini) For compact topological space X, increase sequence {f,}5° of continuous functions on X,
fn — [ pointwise where f is continuous, then f,, — f uniformly.
Pf. Ve > 0, note f — f, is continuous so E,, := {f — f, < €} is open. Note {E,, }$° is increasing and
X = ;" En, by compact, 3N € Ns.t. X = Ey. Hence Vn > NVx € X(|f(z) — fo(z)] < €).
Proof. (1)For n >0, let EF = f=1([k27", (k+1)27")), F,, = f~1([2",00]) and ¢,, = 22n_1 k27" xpr +2"XF, .
(2) O

Theorem 5.5.5 (Fubini-Tonelli)
For o-finite measure spaces (X, M, u), (Y,N,v),
(DIf E € M®N, then x — v(E,) and y — u(EY) are measurable, and u x v(E) = [v(E,)du(z) =

J (EY)dv(y).

(2)(Tonelli)If f € LT(X xY), then f,, f¥ € LT, g(z) := [ fadv,h(y) == [ f¥du € LY, [ fd(pxv) =
JU f(@,y)dv(y))du(z) = [([ f(z,y)du(z))dv(y).

(3)(Fubini)If f € L'(u x v), then fs, f¥ € L' a.e., a.e-defined g(x) = [ fodp, h(y) = [ fvdv € L,

Jfd(pxv) = [([ f(z,y)dv(y))dp(z) = [([ f(z,y)du(z))dv(y).
For complete o-finite measure spaces (X, M, u), (Y, N, v), completion (X xY, L, \) of (X XY, MQN, X
v),

(4)(Tonell))If f € L“'(A) then f;, fY € LT ae., ae-defined z — [ fodv,y — [ fYdp € LT,
J fax= [[ f(a,y)du(x = [[ f(z,y)dv(y)dp(x).

(5)(Fub1n1)If f € Ll()\) then f,, fY € L', a.e-defined = — [ fodv,y — [ fYdu € L', [ fd\ =
IJ fz, y)du(a = [[ [z, y)dv(y)du(z).

Proof. (1)WLOG assume p and v are finite, because X x Y = [J{°(X; x Y;) where {X; x Y} is an increasing
sequence of rectangles of finite measure then consider EN(X; xY;) and use MCT. Let C be the set of E € M@N
for which conclusions hold.

For E = A x B, then v(E,) = xa(z)v(B), p(EY) = p(A)xs(y), n x v(E) = u(A)v(B), so E € C. Suffice to
show C is a monotone class.

For increasing sequence {E,} C C, E = |J{° E,, then measurable and increasing f,,(y) = p((E,)Y) = f(y) =
w(EY) pointwise, hence EY is measurable and by MCT [ p(EY)dv(y) = lim [ p((E,)Y)dv(y) =limpu x v(E,) =
u X v(E), so E € C. Similarly, decreasing sequence follows by DCT.

(2)Note it holds for simple function, then Tonelli follows by simple function approximation and MCT.

(3)Note if f € LT (X xY) and [ fd(u x v) < oo, then g < oco,h < oo and f,, f¥ € L' a.e. So for f € L' (ux v),
Fubini follows by Tonelli.

(4)By Lemma “For £ € M x N with pu x v(E) = 0, then v(E,) = pu(EY) = 0 a.e.” and “For L-measurable f
with f =0 M-a.e., then f,, f¥ € L' ae., [ fodv = [ f¥du=0 ae.”. O

35



Remark 5.5.3
(1)Usually omit the brackets if condition holds, [([ f(z,y)du(z))dv(y) = [[ f(z,y)du(z)dv(y) =
[ fdpdv.
(2)The condition “o-finite” “f € LT or “f € L7 is necessary.
(i)To see fy, f¥ is measurable for all z,y, [[ fdudv, [[ fdvdu exist but NOT equal, f is non-

negative but NOT measurable, pick X =Y = w;, M = N is g-algebra of countable or cocountable sets,

0 A countable
pw=v:Aw— y E={(z,y):y <z}, f=x&
1 A cocountable

(ii)To see fy, f¥ is measurable for all z,y, [[ fdudv, [[ fdvdu exist but NOT equal, f is
measurable and [ |f|d(u x v) = oo, pick X =Y =N, M =N = P(N), u = v is counting measure,
1 m=n
f:mn)—< -1 m=n+1.
0 ow.
(3)Trick: to reverse the order of integration in a double integral [ fdudv, first verify [ |f|d(pxv) <
oo by Tonelli to evaluate it as an iterated integral, then apply Fubini to get [[ fdudv = [[ fdvdpu.

Definition 5.5.2 (Integral)
(1)(Riemann integral) For bounded E C R", bounded f : E — R, f is Riemann integrable on E iff
(3E C R cube) infp partition of RU(f, P) = SUPp partition of r L(f; P) where

(i)f : R — R is extended by R\ E — {0}

({)U(f; P) = >, cpSuPye, f(x)|r| is upper Darbour sum and inf U(f, P) is upper Riemann integral.

(i) L(f; P) = >_,cpinfee, f(x)|r| is lower Darboux sum and sup L(f, P) is lower Riemann integral.
Then this value is Riemann integral of f on E, written fE f-
(2)(Integral) For measure space (X, M, ) where p is a positive measure,

(i)the integral of nonnegative simple function ¢ = Y 7 a;xx, on X is [ pdu = "7 a;pu(X5).

(ii)the integral of nonnegative simple function ¢ = > Ja;xx, on E € X is [, ¢ = [@xg, where
OXE = Y| @iXx,nE is a nonnegative simple function. Hence we only define the integral on X below.

(iii)the integral of nonnegative measurable function f : X — [0,00] is [ f =sup{[¢ : 0 < p <
f, ¢ simple}, denote the set of nonnegative measurable functions on X by L™ (X;u) (LT for short).

(iv)for real-valued measurable function f : X — [—oo,00], f is

(a)integrable iff f+, f~ are integrable, then [ f = [ fT — [ f~ is the integral of f.
(b)extended integrable iff at least one of fT, f~ is integrable, then extend integral to oo.

(v)for complex-valued measurable function f : X — C, f is integrable iff
ROHYR (S )T, (S f) are integrable, then [ f=[R )T —[(R)"+i [(SHT—i [(Sf)™
is the integral of f.

(vi)for vector-valued measurable function f = (f;)%;, f is integrable iff f; is integrable for all i € I,
then [ f = ([ fi)k; is the integral of f.

(3)(p-seminorm) For 0 < p < oo, complex-valued measurable function f: X — C",
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(i)p-seminorm of f is ||f|l, = ([ |f|Pdp)? .
(ii) essential supremum of f is esssup f = inf,(n)=o Sup e x\n f(2).
(iil) essential inferior of f is essinf f = sup, ()= infrex\n f(2).

()11 Iloe = esssup |
f is p-integrable iff ||f|], < oo, then FOR p > 1 denote the set of all p-integrable functions on X by
LP(X;C™; p) (LP(X; p) or LP for short). f is essential bounded iff || f||ooc < 00, then denote the set of all

essential bounded functions on X by L>®(X;C"™; p).

Remark 5.5.4

(1)The choice of cube R NOT change the value of Darboux sum, so we can replace “JE C R cube”
by VE C R cube.

Btw, it could be proved that “f is Riemann integrable on R iff (Ve > 0)(3P partition of R)U(f, P)—
L(f,P) < €. Then it is a trick that let wp = sup,cp f(2)—infyer f(z) and get “f is Riemann integrable
iff lim|p| 0+ D_pepwr = 07, which would be an easy way to show Lebesgue Criterion.

(2)For bounded E C R"™, E is Jordan measurable iff xg is Riemann integrable, then denote fE XE
by (Jordan) content (or Peano content) |E|. Similarly, outer (Jordan) content is inf U(x g, P) while
inner (Jordan) content is sup L(x g, P).

Then we could verify it is a content. Although we could define Jordan content first, then define the
integral viz. the restriction of Riemann integral for Jordan measurable space, but it is not worthy of an
arduous work.

(3)For [ ¢dp, written [ ¢ for short and [ ¢(x)du(z) for long. Specially for Lebesgue measure, we
always denote [ ¢(z)du(x) by [ ¢(x)dx for Lebesgue-Stieltjes integral.

(4)L?(p) is a Banach space, note integral is a linear functional on it.

To see Bolzano-Weierstrass, Heine-Borel, Accumulation Point Theorem NOT hold, Pick LP(R),
fn = X[n,n+1), bounded closed F' = {f,}, open cover B, :={g € L? : ||g — fullp < %}

(5)There’s a problem about Riemann integral. It can be NOT integrable after cutoff, while Lebesgue

integral always holds.

flx) fl@)=1 . _ .
To see f € C([0,1]), g(z) = is NOT Riemann integrable but Lebesgue integrable

0 ow.

1 ze K
on [0, 1], pick f = where K is a generalized Cantor set.

1—d(z,K) omw.

Theorem 5.5.6 (Lebesgue Criterion)
For bounded £ C R™, bounded f : F — R,
()If f is Riemann integrable, then f is Lebesgue integrable and two integrals are equal.

(ii) f is Riemann integrable iff the set of discontinuities of f on E has Lebesgue measure zero.
Proof. Note 3{Px}5° is a sequence of successive refinement of partitions of rectangle R O E, so im U(f, Py)

37



equals the upper Riemann integral while lim L(f, P;) equals the lower Riemann integral. By L(f, Py),U(f, Px)
can be represented as Lebesgue integrals of simple functions I and wg, then I, — [ and u; — u pointwise and
! < f <wu. By Dominated Convergence Theorem, [ ldm =lim L(f, P;),imU(f, Px) = [ udm.

For (i), if f is Riemann integrable, then [!=lmL(f, P;) =limU(f,Px) = [uso [f= [l= [w.

For (ii), choose Py s.t. ||Px|| < 4

7, note f is continuous at x iff I(x) = u(x), so f is Riemann integrable iff

Ju= [liff u=1a.e. iff the set of discontinuities of f on E has Lebesgue measure zero. O

Remark 5.5.5
(1)Pick x g, then get Corollary
(i)For Jordan measurable E C R”, E is Lebesgue measurable and |E| = m(E).
(ii)For bounded E C R", E is Jordan measurable iff m(0F) = 0.

Actually for bounded E C R™, the inner content of E is the Lebesgue measure of Int(E), and the
outer content of E is the Lebesgue measure of E.

(2)To see there exists a Jordan nonmeasurable bounded domain, pick K C [0,1] is generalized
Cantor set with positive measure, then U = ((0,1) x (=1,1) \ (X x [0,1])) is bounded domain and
oU = [0,1] x [-1,1] \ U has positive measure.

To see there exists an Riemann integrable function on a Jordan nonmeasurable set that is not zero
at every pt, pick x¢ on C' where C' is the Cantor set.

To see there exists a positive function on [0, 1] with lower Riemann integral 0, pick Riemann function

1/p x=q/p,p €L",q € L, ged(p,q) =1
R:R—>R,x+— 1 2=0 then replacex — 0 ¢ Qbyz—1 z¢
0 z¢Q
Q.

To see there exist a Riemann integrable function f on [0,2] and a continuous bijective function
g : [0,2] — [0,2] s.t. f o g is not Riemann integrable, pick f = x2c where C is the Cantor set,
h(z) = x + C(x) : [0,1] — [0,2] where C(z) is the Cantor function, g = 2h~! since h is strictly
increasing and continuous. The set of continuities of f is 2C', then the set of continuities of f o g is
g~ 1(2C) = h(C), note m(h(C)) = un(h=1(h(C))) = pn(C) = m(C) + pc(C) = 1. (Use the property of
Lebesgue-Stieltjes measure “For continuous increasing function G on [a,b], if E C [G(a), G(b)] is a Borel
set, then m(E) = ug(G~1(E))".)

(3)Deeply speaking, the essential difference between Jordan content and Lebesgue measure is that
Jordan content is a 1l-step approximation while Lebesgue measure is a 2-step approximation. The
first approximates from the outside by open sets and from the inside by compact sets, and the second
approximates the open sets from the inside and the compact sets from the outside by finite unions of

cubes.
Proposition 5.5.7

(1)For f,g € L', then VE e M) [, f= [pgiff [|f—g|=0iff f=ga.e.
(2)(1st Mean Value Theorem for integral) For f bounded, nonnegative g € L, then Jinf,cp f(z) <
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n < sup,ep f(z) st. [, fg=n [y g Specially, if E is connected and f is continuous, then 3¢ € E s.t.
Jef9= 1) [pa.

Proof. (1)Suffice to show [|f—g|=0=>(VEeM) [, f= [p9=f=gae Fist| [, f—[,9] < [xelf-g] <

J |f =gl = 0. Second suppose not, then at least one of f*, f~ be nonzero on a set of positive measure. WLOG

m({f*>0}) >0, then [,y oy f— [i7i20, 9> 0 contradiction.

(2)If [,9 = 0, then g = 0 a.e. so [, fg = 0. Assume [, g > 0, then m({g > 0}) > 0 so let n = fffgg.
E

Know f(E) is connected, if n ¢ f(FE), then wlog assume n = inf f(E). So m({fg > ng}) = m({g > 0}) get

Ji f9>n [, g contradiction. O

Remark 5.5.6
(1)Integral makes no difference if alter functions on null sets. So redefine L!(u) be the set of
equivalent classed of a.e.-defined integrable functions on X. It has two advantages:
(i)For completion [z, there exists a natural bijection between L!(x) and L (jz), so we can identify
them.
(i) Then positivity holds. L' is a metric space with d(f,g) = [ |f — g| while seminorm becomes

norm.

Exercise 5.5.1

(I)m(E) < oo, f € L, then lim, oo ||fllp, = M = ||f|loc. Moreover, if M > 0, then

p+1
lim, o figlﬂﬂp = M.

{fn}® €LY, fn = fae and [ f=lim [ f, < oo, then (VE € M) [, f = lim [, f,. However,
it NOT holds if [ f = lim [ f, = oo.

Proof. (l)mp—mo(fE |f|p)% < limp— 00 M(m(E))% = M, wlog assume M > 0, liimp_mj(fE |f\p)% > himp%oo(fE{lf‘>M—e} | fIF

(M —€)lim, ,  m(E{|f| >M—e})% = M — € for any € > 0.

. T Jp P17 [T Jopgnen—o H° 7= Jopnen—o H1° m(B{|f|<M—c}) T
Similarly lim,_, s T < M, note lim,_, T < limp 00 ooy TP = B =0 —e/2]) lim,_, o0
. pt1 . S g 1P
0 for any € > 0, then lim, , filfl‘f@ > (M —e)lim, , % =M —e.
(2)By Fatou, fE f= f@anE < hﬂfanE < lim fE fn, similarly fEc f <lim fEc fn, then consider the sum.
Counterexample, X =R,y =m, E, = (—00,0) U [n,n+ 1], f, = x&,,, £ = [0, 00). O

Definition 5.5.3

gamma function T'(z) = [~ t*"te~'dt (R z > 0) Well-defined: fol [t==te~t|dt < fol tR #=1dt < 0o and
[ e tdt < [T e? < oo Prop: (1)T(z + 1) = 2I'(z) by integration by parts fEN tPe tdt =
—t7e~tN + szN t*~le=tdt then ¢ — 0,N — oo I'(z + 1) = 2I'(2) can extend I' to almost(except
for singularities at the nonpositive integers) the entire complex plane (2)I'(n 4+ 1) = n! (Many of the
applications of the gamma function involve the fact that it provides an extension of the factorial function

to nonintegers)
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Construction of this surface measure is motivated by a familiar fact from plane geometry: define the surface
measure of a subset of the unit sphere in terms of the Lebesgue measure of the corresponding sector of the unit

ball.

Definition 5.5.4

denote {x € R™ : |z| = 1} by S" L. If z € R™\ {0}, polar coordinate of x are r = |z| € (0,00),
= T € S7=1. The map ®(x) = (r,2’) is a continuous bijection from R™ \ {0} to (0, 00) x S™~! whose
(continuous) inverse is ®~1(r,2’) = r2’. Denote the Borel measure on (0,00) x S"~! by m, induced
by ® from Lebesgue measure on R”, that is m.(E) = m(®~(FE)). Moreover define measure p = p,, on

(0,00) by p(E) = [ r™ tdr

Theorem 5.5.8
Exists a unique Borel measure o = 0,,_; on S" ! s.t. m, = p x 0. if f is Borel measurable on R™ and

f=0o0r feL'(m), then [;, f(z)dx = [[° [qu_s f(ra')r" " do(a')dr

Proof. When f is a characteristic function of a set, is merely a restatement of m, = p x ¢ and it follows for
general f by the usual linearity and approximation arguments. Hence we need only to construct o. If E is a
Borel set in S™71, for a > 0 let E, = ®~((0,a] x E) = {r2’ : 0 <r < a,2’ € E}. If it holds when f = xg, we
must have m(E;) = fol [y tdo(2)dr = o(E) fol rldr = o(E)/n

Therefore define o(E) to be n - m(F;) since the map F — FE; takes Borel sets to Borel sets and commutes
with unions, intersections and complements. It is clear that ¢ is a Borel measure on S™~!. Also, since E, is
the image of F; under the map x — ax, it follows from Thm?2.44 that m(E,) = a"m(E7) hence if 0 < a < b,
m.((a,b] x E) = m(Ey \ Ea) = Y=9"0(E) = o(E) [ r"'dr = p x ((a,b] x E) Fix E € Bga1 and let Ag

n

be the collection of finite disjoint unions of sets of the form (a,b] x E. By propositionl.7, Ag is an algebra on
(0,00) x E that the o-algebra Mp = {A x E: A € B(g,«)}. By the preceding calculation we have m, = p x o
on Ag and hence by the uniqueness assertion of Thm1.14 m, = p X 0 on Mpg. But | J{Mpg : E € Bgn-1} is
precisely the set of Borel rectangles in (0,00) x S"~! so another applications of the uniqueness theorem shows

that m. = p x ¢ on all Borel sets O

Remark 5.5.7
Of course, it can be extended to Lebesgue measurable functions by considering the completion of the

measure o
Corollary 5.5.9

If f is a measurable function on R™, nonnegative or integrable, s.t. f(z) = g(|x|) for some function g on

(0, 00), then f f(z)dz = U(Sn—l) fooo g(’l")’l"n*ldr
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Corollary 5.5.10

Let ¢ and C denote positive constants, let B = {z € R"™ : |z| < ¢}. Suppose that f is a measurable
function on R™ (1)If | f(x)| < C|z|~® on B for some a < n, then f € L'(B). However, if |f(x)| > Clz|™"
on B, then f ¢ LY(B) (2)If |f(z)| < C|z|~® on B¢ for some (??)a > n, then f € L'(B¢). However, if
|£(@)| 2 Cla|~" on B, then ¢ L'(B)

Pf. apply above to |z|~%xp and |z|"*xpe

Proposition 5.5.11
(DIf a > 0, then [, exp(—alz|?)dz = (2)"/2 (2)0(S"~) = 2575 (3)If B = {z € R" : [z < 1}, then

n/2

m(B") = gy WI) =@ -1, T(n+3)=(n-3)n-3)EVr

Proof. (1)Denote the integral on the left by I,. For n = 2, by Corollary2.51, I = 2« fooo re=dr =
—(g)e_“7'2|8° = T Since exp(—alz|?) = I} exp(—ax?), Tonelli implies I, = (I;)". In particular, I; = (I5)"/?
so I, = (I)"? = (2)by above and substitution s = 72, 7"/2 = [o. e~lePdy = o(S™Y) [)° rm=le’dp =
AT (20 gn/2-1ems g = 2SN (8) (3)m(B) = n~lo(S"1) by definition of o, and Inl'(3n) = T(4n + 1)

(3)T(3),
e dr = /7 O

by the functional equation for the gamma function. (4)By the functional equation, I'(n+1) = (n—1)...

then s =12 T(3) = [, s /2e%ds =2 [° e dr = 1=

5.6 Differentiation

Theorem 5.6.1 (The Hahn Decomposition Theorem)
v signed measure on (X,.4), then 3 positive set P and negative set N s.t. PUN = X. If P/ N’ is

another such pair, then PAP’ is null for v

Proof. WLOG assume v does not obtain the value +00. m = sup{v(E) : E positive set}. So exists {P;} of
positive sets with v(P;) — m. Let P = Ufo P;, note positive set closec under countable union, P is a positive
set and v(P) = m.

Claim N = X \ P is a negative set. First, N cannot contain any nonnull positive set, o.w. E C N is positive
with v(E) > 0, then consider £ U P.

Second, by above, if A C N,v(A) > 0, there exist B C A with v(B) > v(A) with v(4A\ B) < 0.

If N is not negative, then, we can specify a sequence of subsets {A;} of N and a sequence {n;} of positive
integers as follows: n; = inf{n : 3B C A,_1,v(B) > v(A;—1) + %} specially n; = inf{n : 3B C N,v(B) > %},
and A; is such a set.

Let A = (" A;. Then co > v(A) = limj_, v(A4;) > 377 n%_, so nj; — 00 as j — co.But once again, there
exists B C A with v(B) > v(A) + % for some n € N. For j sufficiently large we have n < n;, and B C A;_1,
which contradicts the construction of n; and A;.

Finally, if P’, N’ is another pair, we observe that P\ P C P and P\ P’ C N’ so it’s both positive and negative

hence null.

O

41



Remark 5.6.1

(1)Hahn decomposition, it is usually not unique (v-null sets can be transferred), but it lead to canonical
representation as the difference of two positive measures (2)u, v signed measure, are mutually singular
or v is singular w.r.t. p, written p L v iff 3E,F € A)ENF =0, EUF = X, E null for p, F null for v

(Informally speaking, mutual singularity means that u,v live on disjoint sets)

Definition 5.6.1 (The Jordan Decomposition Theorem)

If v signed measure, then exists unique positive measures v and v~ s.t. v =vT — v~ and v+ L v~

Proof. Let X = P U N be a Hahn decomposition, define v (E) = v(EN P) and v~ (E) = —v(E N N). Then
clearly v = vt —v- and vT L v=. If v = p* — u~ and p* L p—, then assume E,F € M st. ENF = 0,
EUF = X and p*(F) = p=(F) = 0, then X = E U F is another Hahn decomposition, so PAFE v-null, so
VAe M)pt(A) =puT(ANE)=v(ANE)=v(ANP)=vt(A). O

Remark 5.6.2

(1)vt, v~ called positive (negative) variation of v, and v = v+ — v~ is Jordan decomposition of v. total
variation of v is |v| := vt +v~ Prop. E € Av-nulliff |[v|(E)=0v L piff |v| Lpiffvt Lpandv™ Ly
(2)observe v is of the form v(E) = [, fdu where = |v| and f = xp — xnx where X = PUN is a Hahn
decomposition. (3)L'(v) = L'(vT)N LY (v™) = L*(Ju]) and [ fdv = [ fdvt — [ fdv™ v is finite (resp.
o-finite) iff |v| is finite (resp. o-finite). (4)absolutely continuous: v signed measure, pu measure, then
v < piff (Vu(E) =0)v(E) =0 (extended) v, u signed measure, then v < p iff v < |u| Prop. v < p iff
v, L piff | < pv << p, v L p,thenv=0Pf X =FEUF, u(E) = |v|(F) =0 and then |v|(E) =0

Theorem 5.6.2
v finite (o-finite has counterexample) signed measure, v < p iff (Ve > 0)(36 > 0)(Vu(E) < I)|v(E)| < €

Proof. Since v < p iff |v| < p and |v(E)| < |v|(E), it suffices to assume v = |v] is positive. The left side
is trivial, on the other hand, suppose not. Then Je > 0 s.t. (Vn € N)(IE, € M A u(E,) < 27" v(E,) > e
Let Fy, = Uy B, and F = ({°F,. Then u(F;) < 2'7% so pu(F) = 0. But v(F)) > € and by v finite
v(F) =limv(Fy) > e Thus it is false that v < p O

If 1 is a measure and f is an extended p-integrable function, the signed measure v defined by v = [ g fduis

absolutely continuous wrt. p. It is finite iff f € L'(u). For complex-valued, also hold, so get:

Corollary 5.6.3
If f € L'(u), then (Ve > 0)(30 > 0)| [, fdu| < e whenever u(E) < §

We shall use dv = fdp to express the relationship v(E) = [ fdu
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Lemma 5.6.4
v, it finite measures on (X. M), either v L por 3¢ >0, F € M s.t. u(F)>0and v > ey on E

Proof. Let X = P, U N,, be a Hahn decomposition for v — n~ 'y, P = (J7° P,,N = (" N,. Then N is a
negative set for v — n=ty, get 0 < v(N) < n~'u(N) for all n so v(N) = 0. If u(P) = 0 then v L p, o.w.

w(P,) > 0 for some n, and P, is a positive set for v —n~1p O

Theorem 5.6.5 (Lebesgue-Radon-Nikodym decomposition theorem)
v o-finite signed measure and p o-finite positive measure on (X, M). Then 3 unique o-finite signed
measures A, p on (X, M) s.t. A L u, p<< pand v = A+ p. Moreover, there is an extended p-integrable

function f: X — R s.t. dp = fdp and any two such functions are equal p-a.e.

Proof. 1 If v and p are finite positive measure. Let F = {f : X — [0,00] : (VE € M) [, fdu < v(E)}.
F is nonempty since 0 € F. If f,g € F, then h = max(f,g) € F since [, hdp = [, , fdu + IE\Agd,u <
v(ENA)+v(E\ A) =v(E) where A= {x: f(z) > g(x)}. Let a =sup{[ fdu: f € F}, noting a < v(X) < o
and choose a sequence {f,} C F s.t. [ f,du — a. Let g, = max(fi,..., fn) and f = sup f,, then g, € F, g,
increases pointwise to f, so [ gndp = a hence by MCT [ fdp = a. Claim X s.t. d\ = dv — fdy is singular
wrt. . If not, then by lemma, 3F € M,e > 0 sit. u(E) > 0 and A > e on E. Then exgdu < dA, ie.
(f +exg)dy < dv so f+ exg € F, contradiction. Suffice to show uniqueness. If also dv = dX + f'du then
d\ —dXN = (f' — f)du. Note A — X L pand (f' — f)dp < dp hence d\ — dN = (f' — f)du =0. So A = N
and f = f' p-a.e. 2 if both o-finite, then X = | |° A; where v(A4;),u(A;) < oo by taking intersection, let
wi(E) = p(ENA)) and v;(E) = v(E N Aj), use above. 3 v signed measure, then v* and v~ O

Remark 5.6.3
Lebesgue decomposition v = A+ p where A 1 p and p < p. If v < p, then dv = fdu for some f, this
result is Radan-Nikodym Theorem, f is Radan-Nikodym derivative of v wrt. u, denote f(the class of

functions equal to f u-a.e.) by %

Proposition 5.6.6
v o-finite signed measure and p, A o-finite measure on (X, M) s.t. v < p and p < \. (1)If g € LY(v),
then g(g—Z) € L*(p) and [ gdv = fgg—Zdu (2)v < A and % = %j—’;\‘ A-a.e.

Proof. By considering v and v~ separately, assume v > 0. fgdy = fg(j—l’:)du is true when g = xg by
definition, then is true for simple functions by linearity then for nonnegative measurable functions by MCT and
finally for functions in L!(v) by linearity. replace v, by u, A and let g = XE%, obtain v(E) = [, g—;d,u =

Jp 92 %d for all E € M. O
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Corollary 5.6.7
(D)p < A\, A < p, then 92 ZK =1 a.e. (wrt. X or p) (2)(simple but important observation) If i1, ..., fin
are measures on (X,/\/l), then 3 measure u s.t. p; < p for all j, namely p = Y7 p;.

For complex measure, let v, v; be the real and imaginary parts of v (note v,., v; are signed measure that don’t

assume the values oo hence finite) v L p iff v, L up where a,b € {r,i} v < X iff v, K X and v; € A

Theorem 5.6.8 (Lebesgue-Radan-Nikodym Theorem)
v complex measure, u o-finite positive measure on (X, M), then 3 complex measure A and f € L*(u)

st. A L pand dv = dX\ + fdu. If also N L p and dv = dXN + f'du, then A = X and f = f/ p-a.e.

Definition 5.6.2

total variation of complex measure v is the positive measure |v| determined by 7if dv = fdu where
u positive measure, then d|v| = |f|du”. Well-defined: 1 we can take u = |v,| + |v;| and use Radan
to get dv = fdu exist 2 if dv = fidus = fodps, let p = w1 + pe, then fi d*“dp =dv = fgd’”“dp o)
that fld’“ = fgdl‘z p-a.e. Since dd% is nonnegative, |f1|d”1 |f1 d’”| =|f2 d“Q\ = |f2 |d“2 p-a.e. Thus
|f1ldp = \fl|d“1 dp = | fa|dp2, hence the definition of |v| is independent of the choice of i and f 3 This
definition agrees with the previous definition when signed measure, for in that case dv = (xp — xn)d|V|

where X = PU N is a Hahn decomposition and |[xp — xn| =1

Proposition 5.6.9
(Dv(B)| < [v|(F) for all E € M (2)v < |v| and dIVI has absolute value 1 |v|-a.e. (3)L(v) = L(|v|)
and if f € L'(v), then | [ fdv| < [|fld|v| (4)|v1 + v2| < 1] + |v2]

Proof. Suppose dv = fdyu as in the define of |v|. Then [v(E)| = | [, fdu| < [, |fldu = [v|(E). If g = dl > then
fdu =dv = gdlv| = g|f|du, so g|f| = f p-a.e. hence |v|-a.e., note |f| > 0 |v|-a.e. so |g| =1 |v|-a.e. O

Take (X, M) = (R", Bgn) 1 = m below pointwise derivative of v wrt. m, let B(z,r) be the open ball of radius

v(B(=,r))

r about z in R™, then F(z) = lim,_,q B

exists For ¢ € R, ¢B := B(z, cr)

Lemma 5.6.10 (Vitali Covering Lemma,)

(1)(finite version)Metric space, {B;}7, then exist {Bj, }72; disjoint and ;_, B; € ;2 3B;, (2)(infinite
version)Separable metric space, F = {B,}jes s.t. R := sup{rad (B) : B € F} < oo, then exist a
countable sub-collection G C F s.t. disjoint and (Jzcr B € Upeg 5C- Moreover, each B € F intersects
some C' € G with B C 5C

Proof. (1)Assume n > 0, let Bj, be the ball of maximal radius. Once Bj,, ..., Bj, are chosen, if there is some
ball in {B;} that is disjoint from Uz 1 Bj,, then let By, |
and terminate. (VB;)(3Bj;,) has the minimal ¢ s.t. B; N Bj, # 0, then B; C 3B;, (2)Let F,, = {B € F :
27""1R < rad(B) < 27"R},n > 0. First let Ho = Fo and Gy be a maximal disjoint subcollection of H,

be such ball with maximal radius, o.w. set m = k
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(exist by Zorn). Once Gy, ..., G, are chosen, let H,+1 = {B € Foq1: BNy Gi = 0} and G,11 be a maximal
disjoint subcollection of H,11. G := USO G, note it is countable since the metric space is separable. Moreover,

VB € F,3C € G s.t. B C C(pick the minimal C'N B # ) O

Definition 5.6.3
measurable f : R™ — C is locally integrable (wrt. m) if [}, |f(z)|dx < co for every bounded measurable

set K C R", denote the space of locally integrable functions by L}, .. If f € L}, .,z € R",r > 0, define
A f(@) = e S fW)dy

Theorem 5.6.11
w(X) < oo, f € L (i), Sis a closed set in C and Ag(f) = ﬁfEfdu € S for every E € M with
w(E) >0, then f(z) € Sae ze€X

Proof. Pick A = B,.(a) C S¢, it suffices to prove u(E) = 0 where E = f~Y(A) If u(E) > 0, then |Ag(f) —a| <
ﬁf;ﬂf—amuér O

Lemma 5.6.12

If f €L}, A f(z) is jointly continuous in r and z
Proof. Note m(B(x,r)) = c¢r™ where ¢ = m(B(0,1)) and m(S(z,r)) = 0 where S(z,r) = {y : |y — x| = r}.
XB(z,r) — XB(wo,r) POINtwise on R™ \ S(xo,70), as 7 — 19 and x — xy. Hence XB(z,r) — XB(wo,ro) &€, and
XB(z,r) < XB(zo,ro+1) i 7 <70+ % and |z — zg| < % By DCT, fB(m,r) f(y)dy is continuous in 7 and x hence so
is Arf(x) = e [, f(W)dy O

Definition 5.6.4
if f € L}

loc?

D0 ey Jiem [F(W)ldy. HF is measurable for (H f)~((a,00)) = U,0(4,1f)"*((a, 50))

Hardy-Littlewood mazimal  function Hf(z) = sup,.o4.|f|(x) =

Lemma 5.6.13
F collection of open balls in R”, let U = |Jzcr B. If ¢ < m(U), then exist disjoint By, ..., By € F s.t.
S ¥ m(B;) > 3¢

Proof. Note exist compact K C U with m(K) > ¢, and finitely many of balls Ay, ..., 4,,, cover K. Then by
Vitali. O

Theorem 5.6.14 (The Maixmal Theorem)
3C > 0s.t. Vfe LY a>0, m({z: Hf(z) > a}) < < [|f(2)|dz

Proof. Let E, = {z : Hf(z) > a}. For each x € E,, choose r; > 0s.t. A, |f|(z) > a. B(x,r;) cover E,, so by

lemma above, if ¢ < m(E,), then exist x1,...,2, € Eq s.t. Bj = B(xj,7,,) are disjoint and Z’f m(Bj) > 3 "c.
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But then ¢ < 3" Y} m(B;) < & % Jo, [f@)dy < 55 o 1F(®)ldy. let ¢ — m(E,) O

notion: limsup,_, f(r) = limeoSupgc),—pjce f(r) = infesosupgc),—pgj<. f(r), note lim, g f(r) = c iff

limsup,_, 5 |f(r) —¢[ =0

Theorem 5.6.15
If f € L}, then lim,,0 A, f(z) = f(z), a.e. z € R (equivalently, limrﬁomﬁg(mﬁ |fly) —
f(z)|dy =0 a.e. z)

Proof. Suffice to show for N € N, A, f(x) — f(x) a.e. x with |z| < N. But for || < N, r <1, A, f(z) depend
only on the value f(y) for |y| < N + 1, so by replacing f with fxp(,n+1), assume f € L'. Given € > 0, exist
a continuous integrable function g s.t. [|g(y) — f(y)|dy < e. Note (Vo € R™)(V§ > 0)(3r > 0)(V]y — x| <

Mlg(y) — g(@)| < 3. Hence |Ag(z) — 9(2)| = mzmy| [o(em (9) — 9(2))dy| < 8. Therefore A,g(x) — g(x),
|

as r — 0 for every x, so limsup,_,q |4, f(z) — f(z)| = limsup,_ |4 (f — 9)(x) + (Arg — 9)(z) + (g — ) (x)] <
H(f—g)(x)+0+|f —g|(x). Hence if E, = {z : limsup,_,o |4, f(z) — f(z)] > a}, Fy = {z: |f — g|(x) > a},
then B, C Fa U{z : H(f —g)(z) > §}. But §m(Fg) < [ |f(z) — g(z)|dz < e. By maximal theorem,
m(Ey) < % + QTCE Since € if arbitrary, m(E,) = 0 for aHQa > 0. But lim,0 A, f(z) = f(x) for all

z¢ U EL. O
Actually, something stronger is true. Lebesgue set of f is Ly = {x : lim,_,¢ m fB(w,r) |f(y)— f(z)|dy = 0}

Theorem 5.6.16

If fe L], then m((Lf)) =0
Proof. Apply above to g.(z) = |f(x) — ¢|, get lim,_,o m fB(Lr) |f(y) — cldy = |f(x) — ¢|. Let D be a
countable dense subset of C, let E' = | ., ¢, then m(E) = 0. If v ¢ E, Ye > 0, choose ¢ € D with [f(z)—c| < e

st |£(y) = f@)] < £(y) ~ e + e. Then limsup, o ozt Sy 1F@) — F@)|dy < [f(@) —c| +e <2 O

Definition 5.6.5
A family {E,-r > 0} of Borel subsets of R"™ is shrink nicely to x € R™ if (Vr)E, C B(z,r) and
(Fa)(Vr)m(E,) > am(B(z,r))

A Borel measure v on R" is regular iff v(K) < oo for any compact K and v(E) = inf{v(U) : E C
U open} for every E € Brn (Actually the latter condition implies the former; note the former implies
o-finite) A signed or complex Borel measure v is regular if |v| regular E.g., if f € L*T(R™), then fdm
regular iff f € L},
Theorem 5.6.17 (Lebesgue Differentiation Theorem)
f € L}, for every € Ly (in particular for a.e. ), limrﬁoﬁf& If(y) — f(z)|dy = 0 and
lim,_,q ﬁ fEr f(y)dy = f(x) for every family {E,},~o that shrinks nicely to x.

Proof. For some o > 0, ﬁ fET |f(y) — f(x)|dy < m fB(mm) |f(y) — f(z)|dy [
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Theorem 5.6.18

v regualr signed or complex Borel measure on R", dv = d\ 4+ fdm be its Lebesgue-Radon-Nikodym

representation. Then for m-a.e. z € R™, lim,_. % = f(=) for every family {E,}, >0 that shrinks

nicely to x

Proof. Note d|v| = d|\| + | f|du, so the regularity of v implies the regularity of A\ and fdm. Get f € L}, ., by

Lebesgue Differentiation Theorem, it suffices to show if A is regular and A L m, then for m-a.e. x, 72((?.)) —0

as 7 — 0 when E, shrinks nicely to x. It also suffices to take E, = B(x,r) and assume \ is positive since for

some o« > 0, we have |T)r‘l((g’;)) < ‘T)I\LI((EE:)) < |>‘L(n]?](;jfr)) < (L);L((%((Z’;)))). Assume X > 0, then let A be a Borel set s.t.

AMA) = m(A°) =0, let F, = {z € A : limsup,_,, % > 1}, it suffice to show (Vk)m(F;) = 0. Similar

to the proof of maximal theorem, given ¢ > 0, 3A C U, open s.t. A(U;) < e. Each x € F} is the center of

a ball B, C Ue s.t. A(Bg) > k™'m(B,). By Lemma, if V. = [, Be and ¢ < m(V,), there exist @1, ...,z
s.t. By, ., By, are disjoint and ¢ < 3" 37 m(B,,) < 3"k 7 A(By,) < 3"kA(V.) < 3"kA(U.) < 3"ke, get

o DPxy j

m(V.) < 3"ke. Since F, C V¢, so m(Fy) =0 -

Theorem 5.6.19

weak-1(can’t use 1 to control)-1 Estimate
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6 Algebraic Topology

6.1 Homology

Fundamental groups, covering spaces, higher homotopy groups, fibrations and the long exact sequence of a
fibration

singular homology and cohomology, relative homology, CW complexes and the homology of CW complexes
Mayer-Vietoris sequence, universal coefficient theorem, Kunneth formula, Poincare duality, Lefschetz fixed point
formula, Hopf index theorem, Cech cohomology adn deRham cohomology, equivalence between singular, Cech

and de Rham cohomology

6.2 Homotopy
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7 Functional Analysis

7.1 Functional Analysis

Hilbert space, Hahn-Banah Theorem, open mapping theorem, uniform boundedness theorem, closed graph
theorem
Basic properties of compact operators, Riesz-Fredholm Theory, spectrum of compact operators

Fourier series, Fourier transform, convolution

7.2 Harmonic Analysis
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8 Differential Manifolds

8.1 Manifold

Smooth manifold, inverse function theorem, implicit function theorem, submanifolds, Sard’s Theorem, embed-
ding theorem, transversality, degree theory, integration on manifolds

real and comlex vector bundles, tangent and cotangent bundles, basic operations on bundles such as dual bundle,
tensor products, exterior products, direct sums, pull-back bundles

differential forms, exterior product, exterior derivative, deRham cohomology, behavior under pull-back
Matrices on vector bundles

Riemann metrics, geodesic, existence and uniqueness of geodesics

associated vector bundles: relation between principal bundles and vector bundles covariant derivative for a
vector bundle and connection on a principal bundle, and their relation

curvature, flat connection, parallel transport

Levi-Civita connection and properties of the Riemann curvature tensor, manifolds of constant curvature
Jacobi fields, second variation of geodesics

Manifolds of nonpositive curvature, manifolds of positive curvature

8.2 Lie Group and Lie Algebra

Basics of matrix Lie groups over R and C: definition of Gi(n), SU(n), SO(n),U(n), their manifold structures,
Lie algebras, right and left invariant vector fields and differential forms, the exponential map

principal Lie group bundle for matrix groups

8.3 symplectic geometry

8.4 Riemann Geometry
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9 Algebraic Geometry

9.1 Algebraic Curves and Surfaces

9.2 Prerequisite

Algebraic variety

9.3 Birational Geometry
9.4 Hodge Theory

9.5 Moduli Space
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10 Complex Geometry
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11 Dynamical System

11.1 Differential Equation

Existence and uniqueness theorems for solutions of ODE; explicit solutions of simple equations; self-adjoint
boundary value problems on finite intervals; critical points, phase space, stability analysis

First order partial differential equations, linear and quasi-linear PDE

Phase plane analysis, Burgers equation, Hamilton-Jacobi equation

Potential equations: Green functions and existence of solutions of Dirichlet problem, harmonic functions, max-
imal principal and applications, existence of solutions of Neumann’s problem

Heat equation, Dirichlet problem, fundamnetal solutions

Wave equations: initial condition and boundary condition, well-posedness, Sturm-Liouville eigenvalue problem,
energy functional method, uniqueness and stability of solutions

Distributions, Sobolev embedding theorem

11.2 Ergodic Theory

11.3 Stability, Control and Chaos Theory
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12 Number Theory

12.1 Analytic Number Theory
12.2 Algebraic Number Theory

12.3 Arithmetic Geometry
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13 Probability Theory

13.1 Random Variable

Sample space, Probability space Random Variables (discrete, constant, multivariate; independent, identically-
distributed, uncorrelated) Probability Distribution (continuous, cumulative, discrete, joint; normal/Guassian,
binomial, bernoulli, exponential) Probability density function Probability Distribution function Probability
mass function characteristic function, generating function, various modes of convergence of random variable
Moment Expectation, Expected value, variance, central moment, factorial moment, coefficient of variation,
correlation, covariance, cumulance

Conditioning Bayes’ Theorem, conditional expectation given a sigma field, prior Probability

Limit theorem law of large numbers central limit theorem large deviations theory law of total covariance/cumulance/expectatic

13.2 Stochastic Process

Markov chain, Guass-Markov process, random graph, random matrix, Stochastic calculus, Martingales, Basic

properties of Possion processes, basic properties of Brownian motion

13.3 Distribution Theory

families of continuous distributions: normal, chi-sq, t, F, gamma, beta; families of discrete distributions: multi-

nomial, Possion, negative binomial;

13.4 Statistics

Basic statistics: sample mean, variance, median and quantiles

Testing: Neyman-Pearson paradigm, null and alternative hypotheses, simple and composite hypotheses, type I
and IT errors, power, most powerful test, likelihood radio test, Neyman-Pearson Theorem, generalized likelihood
ratio test

Estimation: parameter estimation, method of moments, maximum likelihood estimation, criteria for evaluation
of estimators, Fisher information and its use, confidence interval

Bayesian Statistics: Prior, posterior, conjugate priors, Bayesian estimators

Large sample properties: consistency, asymptotic normality, chi-sq approximation to likelihood radio statistics
MLE: maximum likelihood estimate, MAP: maximum a posteriori, linear regression Bayesian estimation, conju-
gate priordistribution, posterior probability latent variable, EM: expectation maximization algorithm, mixture
model MC: Markov Chain, Markov process Monte Carlo method, MCMC: Markov Chain Monte Carlo, Gibbs

sampling
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14 Combinatorics Theory

14.1 Graph Theory

Algebraic graph theory, Ramsey theory, Van der Waerden’s theorem, Hales-Jewett theorem, Umbral calculus,

binomial type polynomial sequences

14.2 Matroid Theory

14.3 Enumerative Combinatorics
14.4 Algebraic Combinatorics
14.5 Geometric Combinatorics

14.6 Analytic Combinatorics
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15 Computation Theory

15.1 Interpolation and Approximation

Trigonometric interpolation and approximation, fast Fourier transform; approximation by rational function;

polynomial and spline interpolations and approximation; least-squares approximation

15.2 Numerical Solution of Differential Equation

ODE: Single step methods and multi-step methods, stability, accuracy and convergence; absolute stability, long
time behavior; numerical methods for stiff ODE’S PDE: finite difference method, finite element method and

spectral method; stability, accuracy and convergence, Lax equivalence theorem

15.3 Linear and Nonlinear Programming

Linear Systems and Eigenvalue Problems: Classical and modern iterative method for linear systems and eigen-
value problem, condition number and singular value decomposition, iterative methods for large sparse system
of linear equations

Nonlinear Equation Solvers: Convergence of iterative methods (bisection, Newton’s Method, quasi-Newton’s
methods and fixed-point methods) for both scalar equations and systems, finding roots of polynomial

Simplex method, interior method, penalty method, Newton’s method, homotopy method and fixed point

method, dynamic programming

15.4 Mathematical Modeling, Simulation, and Applied Analysis

Scaling behavior and asymptotic analysis, stationary phase analysis, boundary layer analysis, qualitative and

quantitative analysis of mathematical models, Monte-Carlo method

15.5 Computability and Complexity
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16 Mathematical Physics

16.1 Classical Mechanics

Lagrangian formalism: inciple of least action, Euler-Lagrangian equation, Noether Theorem, Kepler problem,
rigid body
Hamiltonian formalism: Hamilton’s equation, Poisson bracket, Liouville’s Theorem, canonical transformation,

Hamilton-Jacobi theory

16.2 Electrodynamics

Electrostatics and magnetostatics: fields, potentials, charges, electric and magnetic fields in matter
Electrodynamics: Coulomb’s law, Lorentz force law, Ohm’s law, Faraday’s law, Guass’s law, Maxwell’s equation,
conservation laws, electromagnetic waves, radiation

Basic Methods: the method of images, separation of variables, multipole expansion

16.3 Thermodynamics and Statistical Physics

Fundamental principal of thermodynamics, thermodynamic potentials and process, phase equilibrium and phase
transitions, partition function, entropy

Probability theory, the microcanonical, canonical and grand-canonical ensembles, The Boltzmann, Bose and
Fermi Statistical distributions

Examples: ideal gas model, paramagnet, ideal quantum gases, degenerate Fermi systems; photons and phonons;

Bose-Einstein condensation

16.4 Quantum Mechanics

Fundamental concepts: Hilbert space, states, observables, wave functions, Schrodinger equation, Schrodinger
and Heisenberg pictures, canonical quantization, density matrix

Examples: harmonic oscillator, hydrogen atom model, potential well problems

Symmetry in quantum mechanics, angular momentum, spin, identical particles, and atomic structure

Perturbation theory, scattering, approximation method

16.5 General Relativity

Differential geometry: metric, vector, tensor, differential forms, manifold, connections, curvature, geodesic,
tetrads, Lie derivative, isometries and Killing vector

Gravitation: the principle of equivalence, Einstein’s equation, Hilbert-Einstein action

Exact solution: Minkowski, de Sitter, anti-de Sitter spacetimes, and black hole solution

Causal structure

58



16.6 Quantum Field Theory

Classical field theory: Lagrangian and Hamiltonian formalism, Noether theorem
Quantization: canonical quantization and path integrals

Fermions: representations of Poincare group, Dirac equation

S-matrix: LSZ reduction, Feymann propagator, Feymann rules, normal ordering
Wick’s theorem, the optical theorem, locality

Renormalization: regularization and cutoff, counter terms, renormalization group
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