
LANGUAGE Of MATHEMATICS

Ruiqing Li

each proof is of sketch

Contents

1 Logic and Mathematical Language 1

1.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Model Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Set and Category Theory 6

2.1 various theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Elementary Algebra 17

3.1 Group, Ring, and Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Advanced Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Commutative Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Module Theory, Homology Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 General Topology 20

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Basic Analysis 21

5.1 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Integration and Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Complex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.5 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Algebraic Topology 48

6.1 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



7 Functional Analysis 49

7.1 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Differential Manifolds 50

8.1 Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.2 Lie Group and Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3 symplectic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.4 Riemann Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Algebraic Geometry 51

9.1 Algebraic Curves and Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.2 Prerequisite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.3 Birational Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4 Hodge Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.5 Moduli Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Complex Geometry 52

11 Dynamical System 53

11.1 Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11.2 Ergodic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11.3 Stability, Control and Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12 Number Theory 54

12.1 Analytic Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

12.2 Algebraic Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

12.3 Arithmetic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13 Probability Theory 55

13.1 Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13.2 Stochastic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13.3 Distribution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14 Combinatorics Theory 56

14.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14.2 Matroid Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14.3 Enumerative Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14.4 Algebraic Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14.5 Geometric Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14.6 Analytic Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ii



15 Computation Theory 57

15.1 Interpolation and Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

15.2 Numerical Solution of Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

15.3 Linear and Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

15.4 Mathematical Modeling, Simulation, and Applied Analysis . . . . . . . . . . . . . . . . . . . . . . 57

15.5 Computability and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

16 Mathematical Physics 58

16.1 Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16.2 Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16.3 Thermodynamics and Statistical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16.4 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16.5 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16.6 Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



Notation Compilation

I > 1 > 1.1 > 1.1.1 > (A) > (1) > (i) > (a) > 1○

Definitions that contains the undefined are illegal

so adopt the meta meaning until we literally define it.

Abbreviation for Meta Language

well defined

let/assume

suppose not

since/for/by

so/thus/hence

written/denoted by

follow/similarly

trivial/hold

taken arbitrarily

closed under/preserve

specially/moreover

with/where

o.w. otherwise

s.t. such that

viz. namely

i.e. that is

wlog without loss of generality

iff if and only if

e.g. for example

etc et cetera

qed proof end

resp. respectively

wrt. with respect to

:= let be

≡ be

¬ not

∧ and

∨ or

↔ /⇔ iff

→ /⇒ if then

∀ for any

∃ there be such that

□ qed

Abbreviation for Math Language

α ∧ β ¬(α→ ¬β)

α ∨ β ¬α→ β

α↔ β (α→ β) ∧ (β → α)

(∃v) ¬(∀v)¬∨n
i=1 φi φ1 ∨ ... ∨ φn∨0
i=1 φi ⊥

v̄ (v1, ..., vn)/v1...vn

v̄P
∧n

i=1(viP )

v1Pv2 Pv1v2

v1P...Pvn
∧n−1

i=1 viPvi+1

v1 = v2 v1 ≈ v2 (without ambiguity)

xy x · y (without ambiguity)

v1 < v2 v1 ≤ v2 ∧ ¬v1 = v2 (2-ary relation)

v ̸= w ¬v = w (2-ary relation)

v1 ≥ v2 v2 ≤ v1 (2-ary antonymy)

(∀P (v))φ (∀v)(P (v) → φ)

(∃P (v))φ (∃v)(P (v) ∧ φ)

(∃≥nv)φ(v) (∃v1, ..., vn)
∧n

i=1 φ(vi) ∧
∧

1≤i<j≤n vi ̸= vj

(∃=nv)φ(v) (∃≥nv)φ(v) ∧ ¬(∃≥n+1v)φ(v)

(∃!v)φ(v) (∃=1v)φ(v)

φ(v̄; w̄) φ in bounded v̄ and free w̄

φ(v̄) φ in free v̄

x ∨ y
∨
{x, y}/sup{x, y}

X = {x : P,Q} (∀x)(x ∈ X ↔ P ∧Q)

iv



1 Logic and Mathematical Language

1.1 Language

Definition 1.1.1 (Vocab)

The vocabulary is a set L that consists of 1○parenthese (, ) 2○connectives ¬,→ 3○quantifier ∀

4○identity ≈ 5○variables v0, ... 6○predicates PnP , ... where nP ∈ N 7○functions fnf , ... where nf ∈ N,

written L = {P, ..., f, ...} in brief. Specially, regard P 0 as truth-value sentence ⊤,⊥ and f0 as constant

c0, ....

Definition 1.1.2 (Syntax)

The syntax of first-order logic consists of

(1)L-expression is X1...Xn where X ∈ L;

(2)L-term is in Sterm :=
⋂
{X : (∀v ∈ L)v ∈ X, (∀f ∈ L, t ∈ X)f t̄ ∈ X};

(3)atomic L-formula is t1 ≈ t2 and P t̄ where P ∈ L, t ∈ Sterm;

(4)L-formula is in Sformula :=
⋂
{Y : Satomic formula ⊆ Y, (∀v ∈ L, φ, ψ ∈ Y )(¬φ,φ→ ψ,∀vφ ∈ Y )};

(5)variable v is free in formula φ o.w. bound, iff 1○v occurs in φ when φ ∈ Satomic formula 2○v is free in

ψ when φ ≡ ¬ψ 3○v is free in ψ or ϕ when φ ≡ ψ → ϕ 4○v is free in ψ and v ̸= w when φ ≡ (∀w)ψ;

(6)L-sentence is a formula φ s.t. (∀v ∈ L)v is bound in φ.

Definition 1.1.3 (Semantics)

(1)The L-structure is a set M that consists of 1○underlying set M 2○interpretation function M :

P 7→ PM ⊆ MnP , f 7→ fM : Mnf → M , written M = {M,PM, ..., fM, ...} in brief. Specially, regard

M0 as {Ξ} then ⊤M as truth-value T := {Ξ} and ⊥M as F := ∅.

(2)Interpretation of term t(v̄) is a function tM s.t. for subterm s and ā ∈Mn, 1○sM(ā) = ai when

s ≡ vi 2○sM(ā) = fM(tM1 (ā), ..., tMn (ā)) when s ≡ f t̄.

(3)For formula φ(v̄) and ā ∈Mn, M satisfies φ(ā), written M |= φ(ā), iff

(a)tM1 (ā) = tM2 (ā) when φ ≡ t1 = t2

(b)(tM1 (ā), ..., tMn (ā)) ∈ PM when φ ≡ P t̄

(c)M ⊭ ψ when φ ≡ ¬ψ

(d)M ⊭ ψ ∨M |= ϕ when φ ≡ ψ → ϕ

(e)(∀b ∈M)M |= ψ(ā, b) when φ ≡ (∀w)ψ(v̄, w).

Definition 1.1.4 (Higher-order and Many-sorted Language)

(1)First-order language (FOL for short) has vocab, syntax and semantics above, denoted also by L,

while second-order language (SOL for short) adds:

(a)for vocab, divide variable into individual variable v0, ... and predicate variable Xn1
1 , ..., replace the

rules about variable by individual variable.

(b)for syntax, add recursive rules “(∀X ∈ L)(t ∈ Sterm)Xt̄ ∈ Satomic formula” and “(∀X ∈ L, φ ∈

1



Sformula)∀Xφ ∈ Sformula”, add free predicate variable.

(c)for semantics, add interpretation of atomic L-formula Xt̄, add “(∀S ∈ MnX )M |= ψ(ā, R̄, S) when

φ ≡ (∀Y )ψ(v̄, X̄, Y )” into M |= φ(ā, R̄).

Informally speaking, 1st-order quantifies only variable that range over individuals, 2th-order also

quantifies over sets, 3rd-order also quantifies over sets of sets, etc.

(2)Informally speaking, many-sorted Language (MSL for short) divides variables into several parts

called sorts, then extends vocab, syntax and semantics slightly. Note many-sorted structure M with sorts

S contains underlying setsMs(s ∈ S) and M : P 7→ PM ⊆Ms1×...×Msnp
, f 7→ fM :Ms1×...×Msnf

→

Ms0 .

Example 1.1.1

(1)Based on L = {∈} of set theory, the axioms of topology are at least 3rd-order, e.g. “a topology

is closed under unions” as ”∀U((∀U ∈ U → U ∈ T ) → (∃V ∀x(x ∈ V ↔ ∃U ∈ U(x ∈ U)) ∧ V ∈ T ))”.

(2)To get lower-order or less-sorted, you might use more expensive vocab, e.g. “axioms of module”

is “2-sorted in L = {+R, ·R,+M , ·} with sorts {R,M}” but “FOL in L = {+} ∪ R where (R,+R, ·R) is

a unitary ring and r ∈ R is a 1-ary function”.

(3)Moreover, we always sacrifice the cheap vocab for a good property in FOL, e.g. “axioms of

group” is “ 1○(∀x, y, z)(xy)z = x(yz) 2○(∃e)(∀x)(ex = xe = x ∧ (∃y)yx = xy = e)” in L′ := {·}, but

“ 1○(∀x, y, z)(xy)z = x(yz) 2○(∀x)ex = xe = x 3○(∀x)xx−1 = x−1x = e” in L = {·,−1 , e}. Note every

axiom of the latter is universal sentence, there’re many advantages in model theory.

Remark 1.1.1

(1)To balance the unique readability against simplicity, for parentheses 1○omit outermost 2○¬

control nearest 3○right-associativity.

(2)Although L = {P, ..., f, ...}, actually we omit variable, identity, quantifier etc., e.g. |L = {∈}| =

ℵ0.

(3)Usually denote {φi(v̄)}i∈I by Σ(v̄), M satisfy Σ iff (∀φ ∈ Σ)M |= φ.

(4)For set X, L(X) := L ∪X where x ∈ X is 0-ary function. For X ⊆ M , expansion of M is MX

that adds interpretion xM 7→ x of L(X) \ L; for sublanguage L−, reduct of cM is M ↾ L− that omits

interpretation of L \ L−.

(5)

Remark 1.1.2 (sub, generator and base)

(1)construction sequence of t is (t1, ..., tn) where

(i)tn = t

(ii)∀1 ≤ i ≤ n(ti = v ∨ (∃f ∈ L, i1, ..., inf
< i)ti = f(ti1 , ..., tinf

)).

(2)So s is subterm (resp. subformula) of t iff s is a term (resp. formula) and s is a subsequence of t.

2



(3)Generally speaking

(i)B is a subtype of A iff in an abstract sense B ⊆ A and B preserves specific type of A.

(ii)There’re three methods to describe “type generated by A”, i.e. the smallest type containing

A, the intersection of types containing A, constructive discription, e.g. substructure generated by A ⊆M

is < A >=< A >M := {tM(ā) : t(x1, ..., xn) ∈ Sterm, ā ∈ An}. For type S, usually denote the type

generated by A by S(A). Note the 1st and 2nd are from top to bottom while the 3rd from bottom to

top.

(iii)Usually B is generators of A of type S iff A = S(B), and B is basis of A of type S iff B is

generators as independent as possible, i.e. (∀b ∈ B)S(B \ {b}) ̸= A.

(iv)Usually a free type is a type that has a basis.

♢WARNING: we won’t define sub, generator, base of types below unless something interesting happens,

e.g. base of topological space has some kind of difference.

1.2 Theory

Definition 1.2.1 (theory)

L-theory T := {φ ∈ Ssentence} whose element is axiom.

(1)M is model of T , written M |= T , denote the class of models of T by Mod(T ), iff M satisfy T .

Th(M) := {φ : φ ∈ Ssentence ∧M |= φ} is complete theory of M.

(2)φ is

(i)logical consequence of T , written T |= φ, iff (∀M |= T )M |= φ;

(ii)provable from T , written T ⊢ φ, iff ∃ proof of φ from T .

(4)T is

(i)satisfiable iff (∃M)M |= T ;

(ii)inconsistent o.w. consistent, iff (∃φ ∈ Ssentence)T ⊢ φ ∧ T ⊢ ¬φ;

(iii)complete iff (∀φ)T ⊢ φ ∨ T ⊬ φ;

(iv)decidable iff ∃ algorithm that when given φ ∈ Ssentence as input decides whether T |= φ.

Remark 1.2.1

(1)M,N are elementarily equivalent, written M ≡ N , iff Th(M) = Th(N ).

(2)Elementary class is a class K of L-structures s.t. (∃T )K =Mod(T ).

Definition 1.2.2 (recursion)

(1)basic primitive (function)

(i)Z : N → N, x 7→ 0

(ii)S : N → N, x 7→ x+ 1

(iii)Pn
i : Nn → N, x̄ 7→ xi

denote the set of basic primitive by Sbp (2)primitive recursive (or computable)

3



element of
⋂

Sbp⊆X,closed under composition and primitive recursionX where

(i)(composition)(∀h(x1, ..., xm), g1(x̄), ..., gm(x̄))f(x̄) = h(g1(x̄), ..., gm(x̄))

(ii)primitive recursion (or computability) means (∀g(x̄), h(x̄, xn+1, xn+2))f(x̄, 0) = g(x̄) ∧

f(x̄, S(y)) = h(x̄, y, f(x̄, y)).

(3)µ-/general recursive

element of
⋂

Sbp⊆X,closed under composition, primitive recursion and minimization operatorX where

minimization operator means (∀f : Nn+1 → N)g(x̄) = µy(∀z ≤ y(f(x̄, z) ↓) ∧ f(x̄, y) = 0).

For P (x̄, z) ⊆ Nn+1, minimization quantifier µ s.t. (µz ≤ y)P (x̄, z) =min{z : z ≤ y ∧ P (x̄, z)} if well defined

y + 1 o.w.
.

(4)(total) recursive o.w. partial recursive

iff f is µ-general recursive and total.

(5)recursively enumerable (r.e. for short) of X ⊆ N

iff X = ∅ or (∃recursive f)X = {y : (∃x)f(x) = y}.

Remark 1.2.2

(1)By characteristic function, if we define some property for function or set, then there’s natural

generalization for the other.

♢WARNING: we won’t define such property twice below unless something interesting happens.

(2)L recursive iff (∃ algorithm e)(∀{Xi}n1 ) where Xi is a symbol in L, decides whether X1...Xn is

L-formula.

Remark 1.2.3

(1)(informal)code; Gödel number ; decode; Turing machine; procedure; halt ; Turing computable;

algorithm; effective; decidable

(2)(informal)proof is a sequence of L-formulas generated by proof system which satisfies

(i)length of sequence is finite;

(ii)if T ⊢ φ, then T |= φ;

(iii)if |T | < ∞, then (∃ algorithm e)(∀φ, {φi}n1 )when given {φi} as input, e decides whether

{φi} is a proof of φ from T .

Definition 1.2.3 (definition)

X ⊆Mn is A-definable where A ⊆M , denote ∅-definable by definable, iff

(∃φ(v̄, w̄))(∃ā ∈ Am)X = {x̄ ∈Mn : M |= φ(x̄, ā)}.

In this case, φ(v̄, ā) define X.

4



Remark 1.2.4

(1)L0-structure N is definably interpreted in L-structure M iff

(∃n)(∃X ⊆Mn)(∀P, f ∈ L0)(∃L − definable PX ⊆ XnP , fX ⊆ Xnf+1)(X,PX , ..., fX , ...) ∼= N .

(2)E.g. interpret finite poset in Hasse diagram and interpret category in commutative diagram

1.3 Model Theory

5



2 Set and Category Theory

2.1 various theory

Definition 2.1.1 (equivalence)

L = {≈}, T of equivalence consists of

(1)(reflexive) (∀x)x ≈ x

(2)(symmetric) (∀x, y)x ≈ y → y ≈ x

(3)(transitive) (∀x, y, z)x ≈ y ∧ y ≈ z → x ≈ z.

Remark 2.1.1

We can compare two equivalence which is finer or coarser.

♢WARNING: we won’t define such property below unless something interesting happens.

Definition 2.1.2 (order)

L = {≤}, T of partial order consists of

(1)(∀x)x ≤ x

(2)(antisymmetric) (∀x, y)(x ≤ y ∧ y ≤ x→ x = y)

(3)(∀x, y, z)(x ≤ y ∧ y ≤ z → x ≤ z)

the underlying set of its model is partial order set (poset for short).

(i)preorder (1)(3)

(ii)linear order (or chain) (2)-(4)(∀x, y)x ≤ y ∨ y ≤ x

(iii)well order (2)-(5)(∃x)(∀y)x ≤ y.

Remark 2.1.2

(1)Upper closure (resp. lower closure) of x ∈ X is x↑X =↑ x := {y ∈ X : x ≤ y} (resp. x↓X or ↓ x).

Upper closure of A ⊆ X is A↑X =↑ A :=
⋃

a∈A a
↑X .

(2)interval < x, y > where < (resp. >) is ( or [ (resp. ) or ])

(i)open interval (x, y) := {z ∈ X : x < z < y}

(ii)closed interval [x, y] :=↑ x∩ ↓ y

(iii)half-open interval contains left-open interval and right-open interval.

x ∈ X covers y ∈ X, written y ⋖ x iff y < x and ∀z ∈ X(y ≤ z ≤ x→ (z = y ∨ z = x)).

(2)a ∈ A ⊆ X is

maximal (resp. minimal) of A, written maxA (resp. minA) iff ↑ a ∩A = {a}

x ∈ X ⊇ A is

(i)upper bound (resp. lower bound) of A, denote the set of upper bounds of A by ub(A) (resp.

lb(A)), iff (∀a ∈ A)a ≤ x;

(ii)supremum (or least upper bound) (resp. infimum) or join (resp. meet) of A, written supA

(resp. inf A) or
∨
A (resp.

∧
A), iff x = minub(A).
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♢WARNING: for ∅, it not has maximal, might have supremum, always has upper bound. This must

be taken into consideration when giving the well defined. (3)Poset X is

(i)pointed iff minX exist, called bottom written ⊥.

(ii)pointed directed-completed (pointed dcpo for short) iff any directed subset or emptyset has a

supremum in X, denote supremum x of directed subset A by x = ∨↑A.

(a)directed-complete (dcpo for short) iff any directed subset has a supremum in X;

(b)finite complete iff (∀x, y ∈ X)x ∨ y, x ∧ y ∈ X;

1○∨-semilattice iff (∀x, y ∈ X)x ∨ y

2○∧-semilattice iff (∀x, y ∈ X)x ∧ y

(c)Dedekind complete (conditional complete or least-upper-bound property) iff any non-

empty subset with an upper bound has a supremum in X;

(d)complete iff any subset has a supremum in X.

(iii)dense iff (∀x < y)(∃z)x < z < y.

(4)A ⊆ X is

(i)upper set (resp. lower set (or initial segment)) iff A↑X = A;

(ii)(upward) directed (resp. filtered (or downward directed)) iff A ̸= ∅ and (∀a, b ∈ A)(∃c ∈

A)a, b ≤ c;

(iii)ideal (resp. filter) iff A is a lower set and directed;

(iv)principal ideal (resp. principal filter) iff A is ideal and maxA exists;

(v)cofinal (or frequent) (resp. coinitial) in X iff (∀x ∈ X)(∃a ∈ A)x ≤ a.

♢WARNING: note ⊆ is a partial order relation, so we won’t define the same item twice unless something

interesting happens. For instance

(i)ideal in order theory coincides with ideal in set theory, where

(a)(∀a, b ∈ A)a ∨ b ∈ A

(b)(∀a ∈ A)(∀b = a ∧ b)b ∈ A;

(ii)A finite complete poset naturally becomes a lattice, while a pointed dcpo naturally becomes a

complete lattice.

Theorem 2.1.1

(1)Any subset has a supremum iff any subset has an infimum; any non-empty subset with an upper

bound has a supremum iff any non-empty subset with an upper bound has an infimum.

(2)In domain theory, pointed directed-completed iff chain-complete (every chain has a supremum in

X).

Definition 2.1.3 (set)

L = {∈}, T of Zermelo-Fraenkel with Choice (ZFC for short) consists of

(1)(extensionality) (∀x)(∀y)((∀z)(z ∈ x↔ z ∈ y) → x = y)

(2)(axiom schema of separation) (∀φ(x, z, w1, ..., wn))(∀w1)...(∀wn)(∀z)(∃y)(∀x)(x ∈ y ↔ (x ∈ z ∧
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φ))

(3)(pairing) (∀x)(∀y)(∃z)(x ∈ z ∧ y ∈ z)

(4)(union) (∀x)(∃y)(∀w)((∃z)(w ∈ z ∧ z ∈ x) → w ∈ y)

(5)(power set) (∀x)(∃y)(∀z)(z ⊆ x→ z ∈ y)

(6)(axiom schema of replacement) (∀φ(x, y, w1, ..., wn))(∀w1)...(∀wn)(∀z)((∀x)(x ∈ z → (∃!y)φ) →

(∃u)(∀x)(x ∈ z → (∃y)(y ∈ u ∧ φ)))

(7)(infinity) (∃x)(∅ ∈ x ∧ (∀y)(y ∈ x→ S(y) ∈ x))

(8)(regularity) (∀x)(x ̸= ∅ → (∃y)(y ∈ x ∧ x ∩ y = ∅))

(9)(choice) (∀x)((∀y1)(∀y2)((y1 ∈ x ∧ y2 ∈ x) → (y1 ̸= ∅ ∧ (y1 = y2 ∨ y1 ∩ y2 = ∅))) → (∃z)(∀y)(y ∈

x→ (∃!w)w ∈ y ∩ z)).

Remark 2.1.3

For axioms in relatively brief forms above, add details after (2)(5)(9) separately:

(A)By (2), empty set ∅ := (∀x)(x /∈ ∅) is well defined. subset z ⊆ x := (∀w)(w ∈ z → w ∈ x).

(B)By (2), intersection of two x ∩ y := {z : z ∈ x ∧ z ∈ y} is well defined. By (2)(3), {x, y} is

well defined. By (2)(4), U(x) := {z : (∃y)(z ∈ y ∧ y ∈ x)} is well defined. union of two x ∪ y := U(x, y),

successor function S(x) := x ∪ {x}. By (2)(5), power set P(x) = 2x := {z : z ⊆ x} is well defined.

(C)By (2), (6) can be strengthened to (∀φ(x, y, w1, ..., wn))(∀w1)...(∀wn)(∀z)((∀x)(x ∈ z →

(∃!y)φ) → (∃u)(∀y)(y ∈ u↔ (∃x)(x ∈ z ∧ φ))).

ordered pair (x, y) := {{x}, {x, y}}, index set, (xi)i∈I . Note it has some subtle difference from

“sequence”.

Remark 2.1.4

We will adopt von Neumann-Bernays-Gödel (NBG for short) set theory along the journey, which is

a conservative extension of NFC.

L = {∈, IsSet} where IsSet is a 1-ary predicate, (10)(∀x)(IsSet(x) ↔ (∃y)x ∈ y) and some

subtle differences. And proper class is a class that is not a set.

Definition 2.1.4 (set operation and property)

(1)difference x \ y := {z : z ∈ x, z /∈ y}

(i)complement xc := U \ x

(ii)symmetric difference x△y := (x\y) ∪ (y\x)

(2)union
⋃

i∈I Xi := {x : (∃i ∈ I)x ∈ Xi}

disjoint union
⊔

i∈I Xi :=
⋃

i∈I{(x, i) : x ∈ Xi}

(3)intersection
⋂

i∈I Xi := {x : (∀i ∈ I)x ∈ Xi}

(4)product
∏

i∈I Xi := {(xi)i∈I : xi ∈ Xi} or {f : I →
⋃

i∈I Xi|(∀i ∈ I)f(i) ∈ Xi} then denote f by (xi)

power XY := {f : Y → X}

(5)quotient X/ ∼:= {[x] : x ∈ X}
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equivalence class of x ∈ X about ∼ is [x] := {y ∈ X : y ∼ x}.

(6){Xi}i∈I is

(i)(pairwise) disjoint iff (∀i, j ∈ I)Xi ∩Xj = ∅;

(ii)when I ⊆ N, monotonic iff (increasing) X1 ⊆ X2 ⊆ ... or (decreasing) X1 ⊇ X2 ⊇ ....

(a)limit superior limn→∞Xn =
⋂∞

n=1

⋃∞
i=nXi;

(b)limit inferior limn→∞Xn =
⋃∞

n=1

⋂∞
i=nXi;

(c)limit limn→∞Xn exist iff limXn = limXn, then let limXn = limXn.

(7)X is/has

(i)nontrivial iff X ̸= ∅ (and not proper class or underlying set);

(ii)disjoint iff
⋂

x∈X x = ∅;

(iii)finite intersection property (FIP for short) iff (∀{xi}n1 ⊆ X)
⋂n

1 xi ̸= ∅.

Remark 2.1.5

(1)Specially for I = ∅,
⋃

i∈I Xi = ∅,
⋂

i∈I Xi is proper class or underlying set,
∏

i∈I Xi = {∅}.

(2)If we write (∃{Xi})Y =
⊔

i∈I Xi, usually it is considered as (∃disjoint{Xi})Y =
⋃

i∈I Xi.

♢WARNING: strictly increasing iff X1 ⊂ X2 ⊂ ..., and we won’t define monotone etc below unless

something interesting happens.

(3)P ⊆ P(X) is

(i)cover of X iff X ⊆
⋃

p∈P p;

(i)partition of X iff ∅ /∈ P and X =
⊔

p∈P p.

(iii)Q is refinement of P iff (∀p ∈ P )(∃{qi} ⊆ Q)p =
⋃
qi.

(iv)P ∧Q := {p ∩ q : p ∈ P, q ∈ Q, p ∩ q ̸= ∅}, similarly P ∨Q is the refinest partition of which

P,Q are refinement.

(4)To understand limit of set sequence, limn→∞Xn = {x : (∃n1 < n2 < ...)(∀i)x ∈ Xni
},

limn→∞Xn = {x : (∃n0)(∀n > n0)x ∈ Xn}.

(5)Aδ is the set of countable intersections of elements in A while Aδ symbolizes countable unions,

denote (Aσ)δ by Aσδ. Note GUV AB is usually used for open sets while FWCDK for closed, hence

Gδ, Fσ etc. is frequently used.

Definition 2.1.5 (family of set)

For set X, ∅ ≠ F ⊆ P(X) is

(1)π-system Π iff

(∀A,B ∈ F)A ∩B ∈ F ;

(2)λ-system Λ iff

(i)∅ ∈ F

(ii)(∀A ∈ F)Ac ∈ F

(iii)(∀{Ai}∞1 ⊆ F)
⊔∞

1 Ai ∈ F ;
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(3)monotone class M iff

(i)(∀{Ai}∞1 ⊆ F)((∀i)Ai ⊆ Ai+1) →
⋃∞

1 Ai ∈ F

(ii)(∀{Ai}∞1 ⊆ F)((∀i)Ai ⊇ Ai+1) →
⋂∞

1 Ai ∈ F ;

(4)semiring iff

(i)(∀A,B ∈ F)A ∩B ∈ F

(ii)(∀A,B ∈ F)(∃{Ci}n1 ⊆ F)A \B =
⊔n

1 Ci;

(5)ring R iff

(i)(∀A,B ∈ F)A ∪B ∈ F

(ii)(∀A,B ∈ F)A \B ∈ F ;

(6)δ-ring iff

(i)(∀A,B ∈ F)A ∪B ∈ F

(ii)(∀A,B ∈ F)A \B ∈ F

(iii)(∀{Ai}∞1 ⊆ F)
⋂∞

1 Ai ∈ F ;

(7)σ-ring ΣR iff

(i)(∀{Ai}∞1 ⊆ F)
⋃∞

1 Ai ∈ F

(ii)(∀A,B ∈ F)A \B ∈ F ;

(8)elementary family (or semialgebra) iff

(i)∅ ∈ F

(ii)(∀A,B ∈ F)A ∩B ∈ F

(iii)(∀A ∈ F)(∃{Ci}n1 ⊆ F)Ac =
⊔n

1 Ci;

(9)algebra (or field) A iff

(i)∅ ∈ F

(ii)(∀A ∈ F)Ac ∈ F

(iii)(∀A,B ∈ F)A ∪B ∈ F ;

(10)σ-algebra Σ iff

(i)∅ ∈ F

(ii)(∀A ∈ F)Ac ∈ F

(iii)(∀{Ai}∞1 ⊆ F)
⋃∞

1 Ai ∈ F ;

(11)filter iff

(i)(∀A,B ∈ F)A ∩B ∈ F

(ii)(upward closure (or isotony)) (∀A ∈ F)(∀A ⊆ B ⊆ X)B ∈ F ;

(12)ultrafilter (or maximal filter) iff

(i)(∀A,B ∈ F)A ∩B ∈ F

(ii)(∀A ∈ F)(∀A ⊆ B ⊆ X)B ∈ F

(iii)(proper)∅ /∈ F

(iv)(∀A ⊆ X)A ∈ F ∨Ac ∈ F ;

(13)ideal iff

(i)(∀A,B ∈ F)A ∪B ∈ F
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(ii)(∀A ∈ F)(∀B ⊆ A)B ∈ F ;

(14)prime ideal iff

(i)(∀A,B ∈ F)A ∪B ∈ F

(ii)(∀A ∈ F)(∀B ⊆ A)B ∈ F

(iii)(proper)X /∈ F

(iv)(∀A ⊆ X)A ∈ F ∨Ac ∈ F ;

(15)topology T iff

(i)∅, X ∈ F

(ii)(∀A,B ∈ F)A ∩B ∈ F

(iii)(∀{Ai}i∈I ⊆ F)
⋃

i∈I Ai ∈ F .

Remark 2.1.6

(1)Space is a set X with specific structures on it, e.g. topological space (X, T ), measurable space

(X,Σ). Then call the element of X point (pt for short).

(2)Note filter could also be defined by nontrivial, downward directed and upward closure. Since

under upward closure, (∀A,B ∈ F)A ∩B ∈ F iff (∀A,B ∈ F)(∃C ∈ F)C ⊆ A,B.

(3)Note for algebra generated by semialgebra, just add all finite disjoint unions. We will use it to

induce a measure on an algebra from a measure on a semialgebra. For more construction sequences, see

below.

Theorem 2.1.2 (monotone class theorem)

For algebra A on X, M(A) = Σ(A).

Proof. By M(A) ⊆ M(Σ(A)) = Σ(A), suffice to show M(A) = Σ(M(A)). Note a class that is both algebra

and monotone class is a σ-algebra by
⋃∞

1 Ei =
⋃∞

i=1(
⋃i

j=1Ej), suffice to show M := M(A) is an algebra.

For E ∈ C, define M(E) = {F ∈ M : E \ F, F \ E,E ∩ F ∈ M}, note M(E) is a monotone class and

E ∈ M(F ) ⇔ F ∈ M(E). If E ∈ A, then A ⊆ M(E) hence (∀E ∈ A)M ⊆ M(E). Hence if F ∈ M, then

(∀E ∈ A)F ∈ M(E), i.e. (∀E ∈ A)E ∈ M(F ) so A ⊆ M(F ). Therefore (∀F ∈ M)M ⊆ M(F ), i.e. M is

closed under difference and intersection.

Remark 2.1.7

(1)In the proof above, we use the outer way and a 2-ary version of its common trick (Trick: to prove

all elements of a specific type satisfy property P, pick the set of all elements satisfy P, then show that

set is the same type and contains all generators). To prove M(A) is closed under complement, the outer

way uses M1 := {E ∈ M : Ec ∈ M} and M ⊆ M1 by showing A ⊆ M1 and M1 is a monotone class,

while the inner way uses transfinite induction to its construction sequence.

(2)For F ⊆ P(X),

(i)Π(F) = {
⋂n

1 Fi : (∀i)Fi ∈ F}
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(ii)R(F) = {π1△...△πn : (∀i)πi ∈ Π(F)}

(iii)A(F) = R(F ∪ {X}) = R(F) ∪ {X \R : R ∈ R(F)}

(iv)Define F∗ = {
⋃∞

1 (Ai \ Bi) : (∀i)Ai, Bi ∈ F ∪ {∅}}, recursively define F0 = F and Fβ =

(
⋃

α<β Fα)
∗, then ΣR(F) =

⋃
α<ω1

Fα

(v)Σ(F) =
⋃

α<ω1
(F ∪ {X})α.

Btw, with (iv) and transfinite induction, we can get |B(Rn)| = ℵ.

Definition 2.1.6 (relation and function)

(1)R is a n-ary relation on X1, ..., Xn iff R ⊆ X1 × ...×Xn, denote (x1, ..., xn) ∈ R by R(x1...xn).

(i)domain dom(R) := {x̄ : (∃ȳ)Rx̄ȳ}

(ii)range ran(R) := {ȳ : (∃x̄)Rx̄ȳ}

(iii)image R(X) := {ȳ : (∃x̄ ∈ X)Rx̄ȳ}

(iv)inverse image R−1(Y ) := {x̄ : (∃ȳ ∈ Y )Rx̄ȳ}

(v)inverse R−1 := {(x̄, ȳ)|Rȳx̄}

(vi)composition S ◦R := {(x̄, z̄)|(∃ȳ)Rx̄ȳ ∧ Sȳz̄}

(2)Relation f is a function iff (∀x̄)(∃!ȳ)fx̄ȳ, denote fx̄ȳ by f(x̄) = ȳ and f from X = dom(f) to

Y ⊇ ran(f) by f : X → Y, x̄ 7→ ȳ.

(i)restriction of f : X → Y to Z ⊆ X is f |Z : Z → Y, z 7→ f(z);

(ii)extension of f is g iff restriction of g is f ;

(iii)f is

(a)injective iff ∀x1, x2 ∈ X(f(x1) = f(x2) → x1 = x2);

(b)surjective iff (∀y ∈ Y )(∃x ∈ X)f(x) = y;

(c)bijective iff f is injective and surjective.

Remark 2.1.8

(1)Especially in recursive theory, for f : X → Y , dom(f) can be a subset of X, then for x ∈ X,

f(x) ↓ (resp. f(x) ↑) iff x ∈ dom(f). f is

(i)total iff (∀x ∈ X)f(x) ↓

(ii)partial iff (∃x ∈ X)f(x) ↑.

(2)For f : X → Y , it naturally induces two set function f : P(X) → P(Y ) and f−1 : P(Y ) → P(X),

though f−1 : Y → X not always exists.

(3)Two ordered sets X and Y are said to have the same order type iff there exists a order isomorphism

between X and Y .

Example 2.1.1

(1)Specific
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(i)Kronecker symbol δij :=

1 i = j

0 i ̸= j

(ii)characteristic function χA(x) :=

1 x ∈ A

0 x /∈ A

(iii)indexing function for X is surjective f : I → X, denote X by {xi}i∈I

(iv)identical map idx : X → X,x 7→ x

(v)constant map cy0
: X → Y, x 7→ y0

(vi)inclusion map from X ⊆ Y to Y is idY |X , written ι : X ↪→ Y

(vii)projection map from X ⊇ Y to Y is p : Y → X s.t. p|X ◦ p = p

(viii)quotient map (or canonical map) π : X → X/ ∼, x 7→ [x]

(ix)n-ary operation on X is f : Xn → X

(2)For α :M → N where M ∈ M and N ∈ N , α is

(i)homomorphism iff

(a)(∀f ∈ L)(∀a1, ..., anf
∈M)α(fM(a1, ..., anf

)) = fN (α(a1), ..., α(anf
))

(b)((∀R ∈ L)(∀a1, ..., anR
∈M)RM(a1, ..., anf

) ↔ RN (α(a1), ..., α(anf
)))

denote the set of homomorphisms from M to N by Hom(M,N) and End(M) := Hom(M,M)

whose element is endomorphism;

(ii)embedding (or monomorphism) iff α is homomorphism and injective;

(iii)epimorphism iff α is homomorphism and surjective;

(iv)isomorphism iff α is homomorphism and bijective, denote the set of isomorphisms by

Isom(M,N) and Aut(M) := Isom(M,M) whose element is automorphism.

M is isomorphic to N , written M ∼= N , iff Isom(M,N) ̸= ∅.

Definition 2.1.7 (sub)

(1)M is substructure of N (or N is extension of M), iff ∅ ≠M ⊆ N and the inclusion map is embedding.

(2)up to isomorphism

We have the following chains of inclusions for continuous functions over a closed, bounded interval of the real

line: Continuously differentiable ⊆ Lipschitz continuous ⊆ absolutely continuous ⊆ continuous and bounded

variation ⊆ differentiable almost everywhere

Lipschitz continuous that are everywhere differentiable but not continuously differentiable: f(x) =

x
2 ∼ (1/x) x ̸= 0

0 o.w.

(1)For f : Rm → Rn differentiable at x0 iff exist a linear map J : Rm → Rn s.t. limh→0
||f(x0+h)−f(x0)−J(h)||Rn

||h||Rm =

0 (If a function is differentiable at x0, then all of the partial derivatives exist at x0, and J is given by Jaco-

bian matrix, n × m) (If all the partial derivatives of a function exist in a neighborhood of a pt x0 and are

continuous at x0, then the function is differentiable at x0. However, the existence of the partial derivatives
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(or even all the directional derivatives) doesn’t guarantee differential at pt. E.g. f(x, y) =

x y ̸= x2

0 o.w.
not

differentiable at (0, 0) but all the partial deirvatives and directional derivatives exist. For a continuous example,

f(x, y) =

y
3/(x2 + y2) (x, y) ̸= (0, 0)

0 o.w.
not differentiable at (0, 0) but all the partial deirvatives and directional

derivatives exist.)

For complex-valued f : C → C, differentiable at a ∈ R iff f ′(a) = limh→0,h∈C
f(a+h)−f(a)

h exist. Although it looks

similar to real-valued, however more restrictive condition. A function f : C → C that is complex-differentiable

at a is automatically differentiable at a when viewed as a function f : R2 → R2. This is because complex-

differentiability implies limh→0,h∈C
|f(a+h)−f(a)−f ′(a)h|

|h| exist. However the converse is wrong, counterexample

f(z) = z+z
2

Any function that is complex-differentiable in a neighborhood of a point is called holomorphic at that point.

Such a function is necessarily infinitely differentiable, and in fact analytic.

The key of difference between complex-differentiable and real-differentiable is (???C has multiplication structure

while R2 not). The complex-differentiable functions locally look not only like a linear transformation R2 → R2,

but like a linear transformation corresponding to multiplication by a complex number, which we can identify

with linear transformations of the plane by the obvious multiplication (a, b) · (c, d) = (ac− bd, ad+ bc), so the

matrix must have the form

a −b

b a

. Such functions have many properties, which gives complex analysis a

much different flavor. For example, if we view complex functions on (simply connected subsets of) the complex

plane as vector fields on R2, then complex-differentiable functions will be conservative vector fields. In other

words, derivatives are linear maps that approximate the function within o. If f is differentiable at x, then

f(x+ t) = f(x) +A(t) + o(t) where A is a linear map and limt→0
o(t)
|t| = 0, note |t| is the same as a complex or

R2. But in R2, A can be any linear map, i.e. 2× 2 matrix with entries in R. In complex case, A is linear map

of 1-dimensional complex vector, i.e. 1× 1 matrix with entries in C. if we think C as R2, then A is a rotation

and scaling, not every 2× 2 linear map is of this form.

(2)For a real-valued (pr complex-valued) (?not need? continuous) function f, 1-dimensional total variation on

[a, b] ⊆ R is V b
a (f) = supP

∑nP−1
i=0 |f(xi+1) − f(xi)| where partition P = {x0, ..., xnP} n-dimensional Let Ω

be an open subset of Rn, f ∈ L1(Ω), total variation of f in Ω is V (f,Ω) = sup{
∫
Ω
f(x)div φ(x)dx : φ ∈

C1
c (Ω,Rn), ||φ||L∞(Ω) ≤ 1} Note note require bounded (1)C1

c (Ω,Rn) the set of continuously differentiable vector

functions of compact support contained in Ω (2)||||L∞(Ω) is the essential supremum norm (3)div is the divergence

operator

A continuous real-valued f on R is bounded variation (BV function) on [a, b] ⊆ R iff its total variation is finite

For n-dimensional, two equivalent definition.

(3)absolutely continuous I interval of R, f : I → R is absolutely continuous on I if ∀ϵ > 0∃δ > 0 s.t. ∀N ,

∀{(xk, yk) : xk < yk ∈ I} disjoint satisfies
∑N

k=1(yk − xk) < δ, then
∑N

k=1 |f(yk)− f(xk)| < ϵ

absolute continuous ⊆ uniformly continuous

uniformly continuous iff ∀ϵ > 0∃δ > 0 s.t. ∀|x− y| < δ, |f(x)− f(y)| < ϵ

(4)For metric spaces (X, dX), (Y, dY ), f : X → Y is Lipschitz continuous if ∃ real constant K ≥ 0 s.t. ∀x1, x2 ∈
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X, dY (f(x1), f(x2)) ≤ KdX(x1, x2)

α-Hölder continuous if ∃ real constant K ≥ 0 s.t. ∀x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ KdX(x1, x2)
α

locally Lipschitz continuous iff for any x ∈ X, exists neighborhood U ∋ x s.t. f |U is Lipschitz continuous

(5)f is continuously differentiable if f ′(x) exist and is continuous. Continuous functions are said to be of class

C0, continuous differentiable functions C1, A function of class C2 if the 1st and 2nd derivative of the function

both exist and are continuous. C∞ smooth fn exist for all n

f is differentiable iff the derivative exists at every point in its domain (f is differentiable at x then f must be

continuous at x)

Let G = (g1, ...gn) be a map from an open set Ω ⊆ Rn into Rn whose components gj are of class C1

Denote ((∂gi/∂xj)(x)) of linear map partial derivatives at x byDxG. Observe that if G is a linear transformation

viz. matrix, then DxG = G for all x

G is a Cr diffeomorphism if G bijection and G,G−1 ∈ Cr (diffeomorphism means C∞ diffeomorphism)

Remark 2.1.9

By Inverse Function Theorem, f : Ω → f(Ω) is C1 diffeomorphism only need f ∈ C1, f injective,

Jf = Dxf is invertible for all x ∈ Ω

For C1 diffeomorphism, only need G is injective and DxG is invertible for all x ∈ Ω

a (topological) manifold is a second countable Hausdorff space that is locally homeomorphic to a Euclidean

space.

Theorem 2.1.3 (Inverse Function Theorem)

(1)(local) For open U ⊆ Rn, V ⊆ Rm, f : U → V ∈ Ck, if Jf (a) is injective for some a ∈ U , then there

exists an open nbd A ⊆ U of a and V ⊇ B ⊇ f(A) s.t. f : A → B is bijective and f−1 : B → A ∈ Ck

(det(Jf−1(a)) = 1/ det(Jf (a))).

(2)(global) For open U ⊆ Rn, V ⊆ Rm (more generally, manifold), f : U → V ∈ Ck, if f is injective on

a closed subset A ⊆ U and Jf (the Jacobian matrix, Jf = ∇T f = Dxf = ( ∂fi
∂xj

)ij) is injective for all

a ∈ A, then f is injective in an open nbd A′ of A and f−1 : f(A′) → A′ ∈ Ck (Dx(f
−1) = [Df−1(x)f ]

−1

for all x ∈ f(Ω))

Lemma 2.1.4 (extend local into global)

For A is a closed subset of a topological manifold X (more generally, a topological space, admitting an

exhaustion by compact subsets), topological space Z, if f : X → Z is a local homeomorphism that is

injective on A, then f is injective on some open nbd of A

The mapping x0 7→ f(x0) is a function, where x0 is an argument of a function f. At the same time, the mapping

f 7→ f(x0) is a functional where x0 is a parameter. Provided that f is a linear function from a vector space to

the underlying scalar field (the set of all linear function from V to F is also a vector space, called (algebraic)

dual space, written Hom(V, F ) or V ∗), the above linear maps are dual to each other, and in functional analysis

both are called linear functionals. linear functional T : V ∗ → F is positive iff (∀f ∈ V ∗ ∧ f ≥ 0)Tf ≥ 0

15



Riesz: To every positive linear fucntional T on C there corresponds a finite positive Borel measure µ on I s.t.

Tf =
∫
I
fdµ (f ∈ C) the converse is obvious

Hilbert space is a real or complex inner space that is also a complete metric space with respect to the distance

function induced by the inner product.

Theorem 2.1.5 (For convex)

(1)f convex iff E = {(x, y) : y ≥ f(x), x ∈ Ω} convex

Assume supporting hyperplane at (x0, f(x0)) is < η, x − x0 > + < γ, y − f(x0) >= 0, then γ < 0

and f(x) ≥ f(x0) − 1
γ η · (x − x0),∀x ∈ Ω (2)for convex A, x0 ∈ ∂A, ∃η ∈ Rn < η, x − x0 >≤ 0 for

all x ∈ A (< η, x − x0 >= 0 is the supporting hyperplane at x0) (3)(hyperplane separation theorem)

A,B ⊆ Rn convex disjoint, then ∃η ∈ Rn, c ∈ R s.t. < x, η >≥ c,< y, η >≤ c for all x ∈ A, y ∈ B (4)
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3 Elementary Algebra

3.1 Group, Ring, and Field

3.2 Advanced Linear Algebra

3.3 Commutative Algebra

3.4 Module Theory, Homology Algebra

3.5 Representation Theory

3.6 number theory

Definition 3.6.1 (ordinal and cardinal)

(1)Set X is an ordinal iff (X,⊆) is strictly well-ordered and (∀x ∈ X)x ⊆ X, denote the class of all

ordinals by Ord.

0, successor ordinal iff (∃Y ∈ Ord)X = Y ∪ {Y }, limit ordinal iff (∀Y ∈ Ord ∧ Y < X)(∃Z ∈ Ord)Y <

Z < X.

(2)The cardinal (or initial ordinal) of a set X, written card(X) or |X|, is the least ordinal number α s.t.

there exists a bijection between X and α.

The α-th infinite initial ordinal is written ωα, and its cardinality is written ℵalpha.

(3)The cofinality of a partial order set P, written cf(P ), is the least cardinal of all cofinal subsets of P.

An ordinal α is regular iff α = cf(α).

(4)Ordinal-indexed sequence is a function from ordinal α to set X, specially (ordinary) sequence when

α = ω. sequence in X is f : Z>0 → X, written {xn}∞1 .

subsequence of f is f ◦ g where g : Z>0 → Z>0 s.t. (∀n < m)g(n) < g(m).

(2)R̄ = R ∪ {−∞,+∞}. (3)For a, b ∈ R̄,

Remark 3.6.1

(1)ω and ω + 1 have the same cardinal but not the same order type, since there not exists order

isomorphic but bijection between them. Bijection could be f : ω+1 → ω, x 7→

 0 x = ω

x+ 1 o.w.
, note order

isomorphism preserves the existence of a maximal element so no order isomorphism exists. Moreover, if

two ordinals are order-isomorphic then they are equal.

(2)Under the order topology, a limit ordinal is the limit in a topological sense of all smaller ordinals.

(3)ω, ω1(the first uncountable ordinal),...

Example 3.6.1

A discription of ordinal is 0 := ∅, 1 := {∅}, 2 := {∅, {∅}}, 3 := {∅, {∅}, {∅, {∅}}}
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Theorem 3.6.1 (transfinite induction)

If P (α) is true whenever P (β) is true for all β < α, then P (α) is true for all α

Remark 3.6.2

Every ordinal is either zero or a successor or a limit. This distinction is important, because many

definitions by transfinite recursion rely upon it. E.g. when defining a function F by transfinite recursion

on all ordinals, one defines F (0), then F (α + 1) assuming F (α) is defined, then for limit ordinals F (β)

as the limit of the F (α) for all α < β.

Definition 3.6.2

(ordinal and cardinal arithmetic) For ordinal, (1)Addition: α+ β is given by transfinite recursion on β

(i)α+ 0 = α (ii)α+ S(β) = S(α+ β) for a successor ordinal S(β) (iii)α+ β =
⋃

δ<β(α+ δ) when β is a

limit ordinal. (2)Multiplication: α+ β is given by transfinite recursion on β

(i)α · 0 = 0 (ii)α ·S(β) = (α ·β)+α for a successor ordinal S(β) (iii)α ·β =
⋃

δ<β(α · δ) when β is a limit

ordinal. (3)Exponentiation: αβ is given by transfinite recursion on β

(i)α0 = 1 (ii)αS(β) = (αβ) · α for a successor ordinal S(β) (iii)αβ =
⋃

δ<β(α
δ) when β is a limit ordinal.

For cardinal, (1)Addition: |X|+ |Y | = |X ∪Y | (2)Multiplication: |X| · |Y | = |X×Y | (3)Exponentiation:

|X||Y | = |XY | where XY denote the set of all functions from Y to X

Remark 3.6.3

(1)Note ordinal addition is not commutative, e.g. 1 + ω = ω ̸= ω + 1, and only left-cancellative.

(2)Every ordinal number α can be uniquely written as cantor normal form ωβ1c1+ ...+ω
βkck where

k ∈ ω, ci ∈ ω \ {0}, ordinal β1 > β2 > ... > βk ≥ 0

real line (R,+, ·, <) where +, ·, < satisfy the axioms of a complete archimedeaan ordered field

arithmetic of extend real number: note 0 · ∞ = 0 in measure theory and probability theory

Theorem 3.6.2 (open set decomposition in R)

(1)Let partition P = {[ai, bi] : 0 ≤ i ≤ n, a = a0 < b0 = a1 < ... < bn = b} of [a, b] as tagged partition

{ai, b : 0 ≤ i ≤ n}. axis-parallel partition of R = Πn
1 [ai, bi] ⊆ Rn is P = P1 × ... × Pn = Πn

1{ai,j : 0 ≤

j ≤ mi, ai = ai,0 < ... < ai,mi
= bi}.

(hyper)volume of R |R| := Πn
1 (bi − ai). Norm of P ||P || := max1≤i≤n,1≤j≤mi{ai,j − ai,j−1}. Q is

refinement of P iff P ⊆ Q. P ⊎Q := Πn
1 (Pi ∪Qi) where P = Πn

1Pi, Q = Πn
1Qi.

cube in Rn is a product of n closed intervals whose side length are all equal n-dimensional interval

(or cuboid) < a, b >= Πn
1 < ai, bi >, also define open, closed, right-open. right-open 2-adic cuboid

2k((j1, ..., jn)
T + [0, 1)n) where k, j1, ..., jn ∈ Z for convenience in harmonic analysis.

domain connected and open

(∀Rn ∋ U open)(∃{Ei}∞1 ⊆ Rn)U =
⊔
Ei where E could be any h-cube or always pick 2-p
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h-interval?. Moverover, if m(U) <∞, then (∃n ∈ N)m(U△
⊔n

1 Ii) < ϵ.

(1)(For n > 1, the result not holds) Every open set in R is a countable disjoint union of open

intervals.

(2)∀G ∈ Rn open, then G is a countable disjoint union of right-open binary cuboid (moreover for

open, closed, left-open ∀G ∈ R̄n closed cuboid).

Proof. (1)∀x ∈ U , define (ax, bx) =
⋃

x∈(a,b)⊆U (a, b), then U =
⋃

x∈U (ax, bx) =
⊔

countable(an, bn) since (i)if

x ∈ (a, b) ∩ (c, d), then (a, b) = (c, d) = (ax, bx) (ii)f : {(ax, bx)} → Q, (ax, bx) 7→ y for some y ∈ (ax, bx)

injective.

(Lou Analysis)Prove for right-open 2-adic cuboid Let the collection of right-open 2-adic cuboids be D(Rn). The

biggest advantages for it is (∀A,B ∈ D(Rn))A∩B = ∅∨A ⊆ B ∨B ⊆ A. For any open V ⊆ Rn, for any x ∈ V ,

let A(x) be the largest set A in D(Rn) s.t. x ∈ A ⊆ V , then A(x) exists and is unique. Note for any x, y ∈ V ,

A(x), A(y) are disjoint or equal, so by there must be rational pt in A(x), get V =
⊔

ω A(x).

Theorem 3.6.3 (Vitali Covering Lemma)

(1)(finite) Let B1, ..., Bn be any finite collection of balls contained in an arbitrary metric space.

Then there exists a subcollection Bj1 , ..., Bjm of these balls which are disjoint and satisfy B1 ∪ ...∪Bn ⊆

3Bj1 ∪ ... ∪ 3Bjm

(2)(infinite) Let F be an arbitrary collection of balls in a separable metric space s.t. R :=

sup{rad (B) : B ∈ F} < ∞ where rad (B) denotes the radius of the ball B. Then there exists a

countable sub-collection G ⊆ F s.t. the balls of G are pairwise disjoint and satisfy
⋃

B∈F B ⊆
⋃

C∈G 5C.

And moreover, each B ∈ F intersects some C ∈ G with B ⊆ 5C

Proof. (1)WLOG assume n > 0. Let Bj1 be the ball of largest radius. Once {Bji}ki=1 are chosen, if there is

some ball in B1, ..., Bn disjoint from
⊔k

i=1Bji , then let Bjk+1
be such ball with maximal radius, o.w. set m = k

and terminate.

∀Bi, there exists the smallest 1 ≤ k ≤ m s.t. Bi ∩Bjk ̸= ∅, then Bi ⊆ 3Bjk .

(2)
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4 General Topology

4.1
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5 Basic Analysis

5.1 Measure Theory

Sobolev space, Radon measure, Hausdorff measure

5.2 Integration and Differentiation

5.3 Complex Analysis

Holomorphic and meromorphic function, conformal map, linear fractional transformation, Schwarz’s lemma

Complex integral: Cauchy’s theorem, Cauchy integral formula, residues

Harmonic functions: the mean value property, the reflection principal, Dirichlet’s problem

series adn product developments: Laurent series, partial fractions expansions, and canonical products

Special functions: Gamma function, Zeta function, elliptic function

Basics of Riemann surfaces, Riemann mapping theorem, Picard theorem

5.4 Measure

Definition 5.4.1 (measure)

For set X, M ⊆ P(X), a (positive) measure on (X,M) is µ : M → [0,∞] s.t.

1○µ(∅) = 0

2○(countably additive of disjoint) (∀{Ei}∞1 ⊆ M)
⊔∞

1 Ei ∈ M → µ(
⋃∞

1 Ei) =
∑∞

1 µ(Ei).

Then call (X,M, µ) measure space.

(1)A content on (X,M) is (finite additive) (2)A premeasure is a measure on a semiring, i.e. M is

a semiring.

(3)A outer measure on X is µ : P(X) → [0,∞] s.t.

1○ 3○(∀{Ei}∞1 ⊆ M, F ∈ M)F ⊆
⋃∞

1 Ei ∈ M → µ(F ) ≤
∑∞

1 µ(Ei).

(4)A signed measure on (X,M) is µ : M → R s.t.

1○ 4○(∀{Ei}∞1 ⊆ M)
⊔∞

1 Ei ∈ M → µ(
⋃∞

1 Ei) =
∑∞

1 µ(Ei) where
∑∞

1 µ(Ei) converges abso-

lutely if µ(
⋃∞

1 Ej) is finite

5○¬∃E,F ∈ M(µ(E) = ∞∧ µ(F ) = −∞).

(5)A complex measure on (X,M) is µ : M → C s.t.

6○(∀{Ei}∞1 ⊆ M)
⊔∞

1 Ei ∈ M → µ(
⋃∞

1 Ei) =
∑∞

1 µ(Ei) where
∑∞

1 µ(Ei) converges abso-

lutely.

Remark 5.4.1

(1)Generally speaking, a measure usually is defined on a σ-algebra. We adopt this notion below for

convenience. So are signed measure and complex measure. And define measurable space is (X,Σ) where

Σ is a σ-algebra on X.

(2)We will see the extension of a measure, measure on semialgebra ⇒ measure on algebra ⇒ outer
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measure ⇒ measure on sigma-algebra ⇒ complete measure. Also we will see the decomposition of a

measure, complex measure ⇒ signed measure ⇒ positive measure.

(3)For outer measure, note 3○ can be replaced by monotone and countably subadditive.

(4)For signed measure, absolute convergence in 4○ is for rearrangement while 5○ is for avoiding the

undefined −∞+∞, note 0 · ∞ = 0 in measure theory.

(5)For complex measure, µ(∅) = 0 is redundant since µ(∅) = µ(∅) + µ(∅) → µ(∅) = 0 holds in C.

(6)

Definition 5.4.2 (classification of measure and set)

(A)For measure space (X,M, µ),

(1)µ is

(i)finite iff µ(X) <∞.

(ii)σ-finite iff (∃{Ei}∞1 ⊆ M)X =
⋃
Ei ∧ (∀i)µ(Ei) <∞.

(iii)semifinite iff (∀E ∈ M)(µ(E) = ∞ → (∃E ⊇ F ∈ M)0 < µ(F ) <∞).

(iv)complete iff (∀E ∈ M)(µ(E) = 0 → (∀E ⊇ F ∈ P(X))F ∈ M).

(v)saturated iff every local measurable set is measurable.

(2)A is

(i)(µ-)measurable o.w. nonmeasurable iff A ∈ M.

(ii)locally measurable iff (∀E ∈ M)(µ(E) <∞ → A ∩ E ∈ M).

(iii)(µ-)null set iff A ∈ M∧ µ(A) = 0.

(iv)(µ-)almost everywhere ((µ-)a.e. for short) iff Ac is a null set.

(B)For topological space (X, T ) and measure on σ-algebra Σ ⊆ P(X),

(1)mu is

(i)locally finite iff (∀x ∈ X)(∃x ∈ E ∈ Σ)µ(E) <∞.

(ii)inner regular (resp. outer regular) iff every measurable set is inner regular (resp. outer

regular).

(iii)regular iff µ is inner regular and outer regular.

(2)A is

(i)inner regular (resp. outer regular) iff A ∈ Σ∧µ(A) = sup{µ(F ) : F ⊆ A,F ∈ Σ, F compact}

(resp. A ∈ Σ ∧ µ(A) = sup{µ(G) : G ⊇ A,F ∈ Σ, F ∈ T }).

Remark 5.4.2

(1)For sigma-finite measure, we have a trick to only consider the “local part” of finite measure.

E.g. pick Lebesgue measure E ⊆ R, then we can consider the property of E ∩ [0, 1] since R =
⋃
[i, i+1],

which can usually be the reason of “wlog assume E is bounded”.

(2)For outer measure µ, A ⊆ X is µ-measurable (or Carathéodory measurable) iff (∀E ⊆ X)µ(E) =

µ(E ∩A) + µ(E ∩Ac). Note it is equivalent to (∀E ⊆ X)µ(E) ≥ µ(E ∩A) + µ(E ∩Ac).

And after giving the Lebesgue measure definition, measurable usually means Lebesgue measurable.
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(2)

For signed measure ν on (X,A), then E ∈ A is positive (resp. negative, null) for ν if (∀F ∈ A∧F ⊆

E)ν(F ) ≥ 0 (resp. ν(F ) ≤ 0, ν(F ) = 0) We shall see “every signed measure can be represented in either

of these two forms”: (i)ν = µ1 − µ2 where µ1, µ2 measure on A and at least one of them is finite (ii)µ

measure on A, f : X → [−∞,∞] measurable function s.t. at least one of
∫
f+dµ and

∫
f−dµ is finite

(extended µ-integrable function), then ν(E) =
∫
E
fdµ is a signed measure ()

Proposition 5.4.1

For measure space (X,M, µ),

(1)(monotonic) (∀E,F ∈ M)E ⊆ F → µ(E) ≤ µ(F ).

(2)(countably subadditive) (∀{Ei}∞1 ⊆ M)µ(
⋃
Ei) ≤

∑
µ(Ei).

(3)(continuous from below) (∀{Ei}∞1 ⊆ M)((∀i)Ei ⊆ Ei+1 → µ(
⋃
Ei) = limi→∞ µ(Ei)).

(4)(continuous from above) (∀{Ei}∞1 ⊆ M)(((∀i)Ei ⊇ Ei+1 ∧ (∃N)µ(EN ) < ∞) → µ(
⋂
Ei) =

limi→∞ µ(Ei)).

(5)(Borel-Cantelli Lemma){Ei}∞1 ⊆ M, if (∃N)
∑∞

N µ(Ei) <∞, then µ(limEn) = 0.

Proof. (5)Note limEn =
⋂∞

n=1

⋃∞
m=nEm ⊆

⋃∞
m=nEm, so µ(limEn) ≤

∑∞
m=n µ(Em) by countable subadditiv-

ity, then note limn→∞
∑∞

m=n µ(Em) = 0 by (∃N)
∑∞

N µ(Ei) <∞.

Remark 5.4.3

(1)The condition (∃N)µ(EN ) < ∞ of continuous from above is necessary, e.g. (N,P(N), | · |) and

Ei = {n : n ≥ i}.

(2)Signed measure is NOT monotonic and countably subadditive but continuous from below and

above.

(3)By continuity from below and above, get µ(limEn) ≤ limµ(En) and limµ(En) ≤ µ(limEn) if

(∃N)µ(
⋃∞

N Ei) <∞.

Lemma 5.4.2 (for extension)

(1)For B ⊆ P(X) s.t. ∅, X ∈ B, ρ : B → [0,∞] s.t. ρ(∅) = 0, then ρ∗(A) := inf{
∑∞

1 ρ(Ei) : Ei ∈

B, A ⊆
⋃∞

1 Ei} is an outer measure.

(2)For outer measure µ∗ on P(X), M of µ∗-measurable sets, written C, is a σ-algebra, and µ∗|M is

a complete measure.

(3)For measure µ on M, let M := {E ∪ N : E,F ∈ M, µ(F ) = 0, N ⊆ F}, then completion

µ : E ∪N 7→ µ(E) is unique extension of µ to a complete measure on M.

Proof. (1)Suffice to show countable subadditivity. ∀{Ai}∞1 ⊆ P(X), ϵ > 0, note for each i, ∃{Ek
i }∞k=1 ⊆ B s.t.

A ⊆
⋃∞

k=1E
k
i and

∑∞
k=1 ρ(E

k
i ) ≤ ρ∗(Ai) + ϵ2−i. Hence ρ∗(

⋃
Ai) ≤

∑
i,k ρ(E

k
i ) ≤

∑
ρ∗(Ai) + ϵ.

(2)Suffice to show countable union and additivity. For disjoint {Ai}∞1 ⊆ M and E ⊆ X, let Bn = ∪n
1Ai

and B = ∪∞
1 Ai. By induction, µ∗(E) = µ∗(E ∩ Bn) + µ∗(E ∩ Bc

n) and µ∗(E ∩ Bn) =
∑n

1 µ
∗(E ∩ Ai), then
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µ∗(E) ≥
∑n

1 µ
∗(E ∩ Ai) + µ∗(E ∩ Bc). Let n → ∞, µ∗(E) ≥

∑∞
1 µ∗(E ∩ Ai) + µ∗(E ∩ Bc) ≥ µ∗(

⋃∞
1 (E ∩

Ai)) + µ∗(E ∩ Bc) = µ∗(E ∩ B) + µ∗(E ∩ Bc) ≥ µ∗(E). Hence µ∗(E) = µ∗(E ∩ B) + µ∗(E ∩ Bc), and∑∞
1 µ∗(E ∩Ai) = µ∗(

⋃∞
1 (E ∩Ai)) then let E = B.

Theorem 5.4.3 (Carathéodory’s Extension Theorem)

For premeasure µ0 on semiring S ⊆ P(X), ∃µ on Σ(S) extends µ0. Specially, if µ0 is σ-finite, then

the extension is unique.

Proof. µ0 on S ⇒ µ∗
0 on P(X) ⇒ µ := µ∗

0|C on C ⇒ µ|Σ(S). To prove the uniqueness, it suffices to show “if ν

is another measure on C that extends µ0, then (∀E ∈ M)ν(E) ≤ µ(E) with equality when µ(E) <∞”.

By E ∈ C, if E ⊆
⋃∞

1 Ai where Ai ∈ S, then ν(E) ≤
∑∞

1 ν(Ai) =
∑∞

1 µ0(Ai), get ν(E) ≤ µ∗
0(E) = µ(E).

If µ(E) < ∞, then ∀ϵ > 0, there is A :=
⋃∞

1 Ai ⊇ E where Ai ∈ S, µ(A) < µ(E) + ϵ, hence µ(E) ≤ µ(A) =

limn→∞ µ(
⋃n

1 Ai) = limn→∞ ν(
⋃n

1 Ai) = ν(A) = ν(E) + ν(A \ E) ≤ ν(E) + µ(A \ E) ≤ ρ(E) + ϵ.

Definition 5.4.3 (product and section)

(1)For σ-algebra Σi on Xi where i ∈ I, X =
∏

i∈I Xi, coordinate map πi : X → Xi, the product

σ-algebra on X is Σ({π−1
i (Ei) : (∀i)Ei ∈ Σi}), written

⊗
i∈I Σi.

(2)For measure space (Xi,Mi, µi) where 1 ≤ i ≤ n,

(i)a (measurable) rectangle is E1 × ... × En where Ei ∈ Mi is side of E. Note the algebra it

generates is A := {
⊔m

j=1E
j
1 × ...× Ej

n : Ej
i ∈ Mi} and the σ-algebra it generates is

⊗
Mi.

(ii)ν :
⊔m

j=1E
j
1 × ...× Ej

n 7→
∑m

j=1

∏n
i=1 µi(E

j
i ) is a premeasure on A, then induces a measure

on
⊗

Mi, denoted by product measure µ1 × ...× µn.

(3)For E ⊆
∏

i∈I Xi ×
∏

j∈J Yj , function f on
∏

i∈I Xi ×
∏

j∈J Yj , then x-section (resp. y-section)

of E is Ex = {y ∈
∏

j∈J Yj : (x, y) ∈ E} (resp. Ey), x-section (resp. y-section) of f is fx(y) = f(x, y)

(resp. fy).

Remark 5.4.4

(1)Note the product σ-algebra has associativity ⊗3
1Mj = (M1 ⊗ M2) ⊗ M3, but the product

measure NOT. However, note if µi is σ-finite for all i, then ν is σ-finite hence the extension is unique,

so µ1 × µ2 × µ3 = (µ1 × µ2)× µ3.

Proposition 5.4.4

(1)For |I| < ω1 and σ-algebra Σi on Xi,
⊗

i∈I Σi = M({
∏

i∈I Ei : Ei ∈ Σi}).

(2)If Σi = Σ(Bi), then
⊗

i∈I Σi = Σ(F1 := {π−1
i (Ei) : Ei ∈ Bi}). Specially, if |I| < ω1 and Xi ∈ Bi,

then
⊗

i∈I Σi = Σ({
∏

i∈I Ei : Ei ∈ Bi}).

(3)For metric spaces {Xi}n1 , X =
∏n

1 Xi with product metric, then
⊗n

1 B(Xi) ⊆ B(X). Specially,

if Xi is separable for all i, then
⊗n

1 B(Xi) = B(X).

(4)If E ∈ M ⊗ N , then Ex ∈ N for all x ∈ X and Ey ∈ M for all y ∈ Y . Moreover, if f is

M⊗N -measurable, then fx is N -measurable for all x ∈ X and fy is M-measurable for all y ∈ Y .
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Proof. (1)Note π−1
i (Ei) =

∏
i ̸=j∈I Xj × Ei and

∏
i∈I Ei =

⋂
i∈I π

−1
i (Ei).

(2)Note π−1
i (Ei) ∈

⊗
i∈I Σi where Ei ∈ Bi. On the other direction, fix i, {E ⊆ Xi : π−1

i (E) ∈ Σ(F1)} is a

σ-algebra on Xi that contains Bi and hence Σi, so π
−1
i (E) ∈ Σ(F1) where E ∈ Σi.

(3)Suppose Ci is a countable dense set of Xi, let Bi be the collection of balls in Xi with rational radius and center

in Ci. Note any open set in Xi is a countable union of elements of Bi, any open set in X is a countable union

of balls with rational radius and center in
∏
Ci. So by the above,

⊗n
1 B(Xi) = Σ({

∏n
1 Ei : Ei ∈ Bi}) = B(X).

(4)Let R = {E ∈ X × Y : (∀x)Ex ∈ N , (∀y)Ey ∈ M}, note R contains all rectangles and is a σ-algebra since

(
⋃∞

1 Ej)x =
⋃∞

1 (Ej)x and (Ec)x = (Ex)
c, R. So R ⊇ M⊗N .

Then note (fx)
−1(B) = (f−1(B))x.

Example 5.4.1 (Lebesgue measure)

(1)Counting measure is µ on (X,P(X)) s.t. µ : E 7→

|E| |E| < ω

∞ o.w.
.

(2)Dirac measure at x ∈ X is δx on (X,M) s.t. δx : E 7→

1 x ∈ E

0 o.w.
.

(3)For topological space (X, T ), Borel measure is any measure on Borel measurable space (X,B(T ) =

B(X) := Σ(T )) where the elements of B(T ) are Borel (measurable) sets.

(4)For g : R → R increasing and right continuous, then ∃ a unique measure on B(R) s.t. (∀a ≤

b)µg((a, b]) = g(b) − g(a), whose completion is written µg on B(R) called Lebesgue-Stieltjes measure

associated with g.

(5)Lebesgue measure m on L(Rn) :=
⊗n

1 B(R) is µg × ...× µg where g(x) = x.

(6)Radon measure is a Borel measure s.t. X is Hausdorff, µ is inner regular and locally finite.

Remark 5.4.5

(1)For B(X), we should point out the topology on X first, but usually for X = Rn, just pick the

topology induced by 2-norm.

(2)For Lebesgue-Stieltjes measure,

(i)Well defined

(a)Premeasure µ0(
⊔n

1 (aj , bj ]) =
∑n

1 [g(bj)− g(aj)]

1○Function: If
⊔
(ai, bi] = (a, b], then after relabeling the index, get a = a1 < b1 =

a2 < ... < bn = b, so
∑n

1 (g(bi) − g(ai)) = g(b) − g(a). If h-intervals
⊔n

1 Ii =
⊔m

1 Jj , then
∑

i µ0(Ii) =∑
i,j µ0(Ii ∩ Jj) =

∑
j µ0(Jj).

2○Countable additivity: ∀{Ii}∞1 h-intervals, wlog assume
⊔
Ii = I = (a, b]. By

µ0(I) = µ0(
⊔n

1 Ii) + µ0(I \
⊔n

1 Ii) ≥ µ0(
⊔n

1 Ii) =
∑n

1 µ0(Ii), then let n → ∞. If a, b is finite hence

assume Ij = (aj , bj ], then ∀ϵ > 0∃δ, δj > 0 s.t. g(a + δ) − g(a) < ϵ, g(bj + δj) − g(bj) < ϵ2−j . Note

[a + δ, b] ⊆ ∪∞
1 (aj , bj + δj), by Heine-Borel, µ0(I) <

∑∞
1 µ0(Ii) + 2ϵ, then let ϵ → 0. O.w. a = −∞ or

b = ∞, show
∑
µ0(Ii) = ∞.

(b)note {(a, b] : −∞ ≤ a ≤ b ≤ ∞} (strictly speaking, (a,∞] ̸⊆ R, so it should be replaced
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by h-interval (a, b], (a,∞), ∅ where ∞ ≤ a < b < ∞) is an algebra, then use Carathéodory Extension

and σ-finite premeasure.

(ii)Conversely, if µ on B(R) is finite on bounded Borel sets, then F (x) =


µ((0, x]) x > 0

0 x = 0

−µ((−x, 0]) x < 0

is increasing, right continuous and µ = µF . Specially, if µ(R) < ∞, then distribution function F (x) =

µ((−∞, x]), which differs from above by the constant µ((−∞, 0]).

(iii)Moreover, Lebesgue-Stieltjes measure ⇔ a complete and regular and σ-finite Borel measure.

(3)For Lebesgue measure, it is the unique Borel measure which is translation invariant, is finite on

compact sets and attains 1 on the unit cube. (See bigrudin P50)

As to the condition “finite on compact sets”, it could be proved that “For σ-compact LCH X,

if µ is a positive Borel measure s.t. this condition holds, then µ is regular”.(See bigrudin P48)

By regular, we can get that for E ⊆ Rn, E is measurable iff (∃G ∈ B(Rn))(N ∈ Rn∧m(N) = 0)G =

E ⊔N iff (∃F ∈ B(Rn))(N ∈ Rn ∧m(N) = 0)E = F ⊔N .

(4)A difference between B(Rn) and L(Rn), is B(Rn+m) = B(Rn)⊗B(Rm) while L(Rn+m) ̸= L(Rn)⊗

L(Rm). So E,F ∈ B ⇔ E × F ∈ B while E,F ∈ L ⇒⇍ E × F ∈ L, e.g. E is Lebesgue nonmeasurable

and F is a null set.

Proposition 5.4.5 (change-of-variable)

(1)For a complete, regular, σ-finite Borel measure µ on M = Σ(T ), the followings are equivalent.

(i)E ∈ M

(ii)(∀ϵ > 0)(∃E ⊆ G ∈ T )m(G \ E) < ϵ

(iii)(∀ϵ > 0)(∃E ⊇ F compact)m(E \ F ) < ϵ

(iv)(∃E ⊆ G ∈ Gδ)m(G \ E) = 0

(v)(∃E ⊇ F ∈ Fσ)m(E \ F ) = 0.

(2)For Lebesgue measure m,

(i)(translation invariant) under translation la : Rn → Rn where a ∈ Rn,

(a)If E ∈ L(Rn), then la(E) ∈ L(Rn) and m(la(E)) = m(E).

(b)If f : Rn ⊇ E → R is measurable, then f ◦ la : l−1
a (E) → R is measurable. Moreover, if

f ≥ 0 or f ∈ L1(m), then
∫
E
fdm =

∫
l−1
a (E)

(f ◦ la)dm.

(ii)under linear transformation T ∈ GLn(R),

(a)If E ∈ L(Rn), then T (E) ∈ L(Rn) and m(T (E)) = |detT |m(E).

(b)If f : Rn ⊇ E → R is measurable, then f ◦ T : T−1(E) → R is measurable. Moreover,

if f ≥ 0 or f ∈ L1(m), then
∫
E
fdm = |detT |

∫
T−1(E)

f ◦ Tdm.

(iii)(change-of-variables) under C1 and injective φ : Rn ⊇ Ω → Rn where Ω is open,

(a)If Ω ⊇ E ∈ L(Rn), then φ(E) ∈ L(Rn) and m(φ(E)) =
∫
E
|detφx|dm(x).

(b)If Ω ⊇ E ∈ L(Rn) and f : φ(E) → R is measurable, then f ◦ φ : E → R is measurable.

Moreover, if f ≥ 0 or f ∈ L1(m), then
∫
φ(E)

fdm =
∫
Ω
f ◦ φ(x)|detφx|dm(x).
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Proof. (2)(i)Suffice to show (a) for Borel sets, since ∀m(N) = 0∃N ⊆ G ∈ B(Rn) s.t. m(N) = m(G). Then mea-

surability holds for continuity, and m(la(E)) = m(E) follows for cubes for open sets by open-set-decomposition,

for Borel sets by regularity.

∀E ∈ B(R), (∃F ∈ B(Rn))(∃N ∈ Rn ∧m(N) = 0)f−1(E) = F ⊔N , then (f ◦ la)−1(E) = l−1
a (F )⊔ l−1

a (N) ∈ Ln,

i.e. f ◦ la is measurable.

The latter of (b) holds for characteristic function by (a), for simple function by linearity, for nonnegative mea-

surable functions by MCT, for measurable functions by taking positive and negative parts.

(ii)Similarly, suffice to show m(T (E)) = |detT |m(E) for cubes. Note if m(T (E)) = |detT |m(E),m(S(E)) =

|detS|m(E) hold for linear transformation T, S, then m((T ◦S)(E)) = |detT ||detS|m(E) = |det(T ◦S)|m(E).

Hence suffice to show for three elementary linear transformation, for Sij interchange the order of integration in

xi and xj by Fubini, for Mi(c), Aij(c) by linearity and (i).

(iii)Prove for the situation of “φx is invertible for all x ∈ Ω”, similarly, suffice to showm(φ(E)) =
∫
E
|detφx|dm(x)

for cube E of side length 2a centered at 0. Denote || · ||∞ by || · || below.

By E compact, know,

||x|| = max1≤j≤n |xj |, ||T || = max1≤i≤n Σ
n
j=1|Ti,j |, we then have ||Tx|| ≤ ||T || ||x|| and {x : ||x− a|| ≤ h} is the

cube of .

Let Q = {x : ||x− a|| ≤ h} be a cube in Ω, by the mean value theorem, gj(x)− gj(a) = Σj(xj − aj)(∂g/∂xj)(y)

for some y on the line segment joining x and a s.t. ||G(x) − G(a)|| ≤ h supy∈Q ||DyG||. In other words,

G(Q) is contained in a cube of side length supy∈Q ||DyG|| times that of Q. So that by Thm2.44, m(G(Q)) ≤

(supy∈Q ||DyG||)nm(Q). If T ∈ GL(n,R), we can apply this formula with G replaced by T−1 ◦G together with

Thm2.44 to get m(G(Q)) = |detT |m(T−1(G(Q))) ≤ |detT |(supy∈Q ||T−1DyG||)nm(Q)

Since DyG is continuous in y, for all ϵ > 0, (∃δ > 0)||(DzG)
−1DyG||n ≤ 1 + ϵ if y, z ∈ Q and ||y − z|| ≤ δ.

Subdivide Q into subcubes Q1, ..., QN whose interiors are disjoint, whose side lengths are at most δ, whose

centers are x1, ..., xN . Apply above replaced by Qj and with T = Dxj
G, obtain m(G(Q)) ≤ ΣN

1 m(G(Qj)) ≤

ΣN
1 |detDxj

G|(supy∈Qj
||(Dxj

G)−1DyG||n)m(Qj) ≤ (1 + ϵ)ΣN
1 |detDxj

G|m(Qj) This last sum is the integral

of ΣN
1 |detDxjG|χQj (x) which tends uniformly on Q to |detDxG| as δ → 0 since DxG is continuous. Thus,

letting δ → 0, ϵ→ 0, find m(G(Q)) ≤
∫
Q
|detDxG|dx

Theorem 5.4.6 (Littlewood’s 1st Principal)

(Every measurable set of finite measure is nearly a finite union of intervals)

For Lebesgue-measurable E ⊆ Rn with m(E) < ∞, ϵ > 0, there exists F =
⊔n

1 Ii where Ii is cube

s.t. m(E△F ) < ϵ.

Definition 5.4.4 (measurable function)

(a)For measurable space (X,M) and (Y,N ), f : X → Y is (M,N -)measurable iff (∀E ∈

N )f−1(E) ∈ M. Specially,

(1)f : X → Rn is (M-)measurable iff f is M,B(Rn)-measurable.

(2)f : Rm → Rn is Borel measurable iff f is B(Rm)-measurable.
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(3)f : Rm → Rn is (Lebesgue) measurable iff f is L(Rm)-measurable.

By considering C as (R2,B(R2)), generalize the measurable into C; note Σ({(a,∞] : a ∈ R}) =

Σ(T ({[−∞, a), (a,∞] : a ∈ R})), by considering R as (R,Σ({(a,∞] : a ∈ R})), generalize the measurable

into R.

(b)positive part (resp. negative part) f+ := max(f, 0), f− := max(−f, 0)

|f | = f+ + f− for real-valued, |f | =
√
(ℜ f)2 + (ℑ f)2 (note |f | ≤ |ℜ f |+ |ℑ f | ≤ 2|f |) (c)Simple

function on E ∈ M is
∑n

1 aiχEi
where ai ∈ R+ ∪ {0}, Ei ∈ M and

⊔n
1 Ei = E.

Remark 5.4.6

WARNING: complex measurable function ⇒ real measurable function ⇒ nonnegative measurable

function ⇒ simple function ⇒ measurable characteristic function ⇒ measurable set ⇒ Lebesgue ⇒

Borel+Null set(controlled by Borel)⇒ Borel⇒ open⇒ interval with rational center and radius. WARN-

ING: we usually define or prove for real-valued, then most of them could be generalized to extended-

real-valued, complex-valued and vector-valued.

Proposition 5.4.7

(1)If N = Σ(B), then f : X → Y is (M,N )-measurable iff (∀E ∈ B)f−1(E) ∈ M. Moreover,

(i)If f : X → Y is continuous wrt. TX , TY , then f is B(X),B(Y )-measurable.

(ii)f : X → R is M-measurable iff (∀a ∈ R)f−1((a,∞)) ∈ M.

(2)For measurable spaces (X,M), {(Yi,Ni)}i∈I , (Y =
∏
Yi,N =

⊗
Ni), coordinate maps πi : Y →

Yi, then f : X → Y is M,N -measurable iff fi := πi ◦ f is M,Ni-measurable for all i ∈ I.

(i)f : X → C is M-measurable iff ℜ f,ℑ f is M-measurable.

(3)For R-valued measurable {fi}∞1 on (X,M), sup fi(x), inf fi(x), lim fj(x), lim fj(x) is measurable.

(Pf. (sup fi)
−1((a,∞]) =

⋃
f−1
i ((a,∞]), (inf fi)

−1((a,∞]) =
⋂
f−1
i ((a,∞])) Specially, if f(x) = lim f(x)

exists for all x ∈ X, then f measurable.

(i)For measurable f, g, max(f, g),min(f, g), f+, f− is measurable.

(4)For E ⊆ X, χE is M-measurable iff E ∈ M.

Exercise 5.4.1

(1)For M-measurable f, g : X → R, show that f + g, fg is M-measurable.

(2)For measurable E1 ⊆ Rn1 , E2 ⊆ Rn2 , Carathéodory function f : E1 × E2 → Rn3 s.t. fy is

measurable for all y ∈ E2 and fx is continuous for all x ∈ E1, if g : E1 → E2 is measurable, then

x 7→ f(x, g(x)) is measurable.

Proof. (1){f + g > a} =
⋃

r∈Q({f > r} ∩ {g > a− r}). For fg is measurable, give two methods:

(i){fg > c} =
⋃

a,b∈Q+,ab≥c({f > a} ∩ {g > b})
⋃

a∈Q−,b∈Q+,ab≥c({f < a} ∩ {g > b})
⋃

a∈Q+,b∈Q−,ab≥c({f >

a} ∩ {g < b})
⋃

a,b∈Q−,ab≥c({f < a} ∩ {g < b}).

(ii)F : X → R×R, x 7→ (f(x), g(x)) is M,B(R2) = B(R)⊗B(R)-measurable by 5.4.7(2), φ : R×R → R, (x, y) 7→
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xy is B(R2),B(R)-measurable by 5.4.7(1)(i).

(2)Pick simple φi → φ pointwise, assume φi =
∑n

1 ajχAj , then x 7→ f(x, φi(x)) is measurable since (f(·, φi(·)))−1(E) =⋃n
1 ((f

aj )−1(E)× aj). So f(x, φ(x)) = lim f(x, φi(x)) is measurable.

Theorem 5.4.8 (for completion)

(1)The following holds iff µ complete:

(i)If f is measurable and f = g µ-a.e., then g is measurable.

(ii)If fn measurable for n ∈ N and fn → f µ-a.e., then f measurable.

(2)For measure space (X,M, µ) and completion (X,M, µ), if f is M-measurable, then ∃g is M-

measurable s.t. f = g µ-a.e.

Proof. (2)Pick simple φn → f pointwise, let ψn be M-measurable simple function with ψn = φn except on a

set En ∈ M with µ̄(En) = 0. Choose N ∈ M s.t. µ(N) = 0 and N ⊇ ∪∞
1 En, let g = limχX\Nψn, then g is

M-measurable and g = f on N c.

Example 5.4.2 (Cantor set)

Cantor set C

(1)Construction:

(i)C = {
∑∞

1 aj3
−j : aj ∈ {0, 2}} (base 3 expression, easy to see |C| = ℵ1 and every pt is

accumulation pt)

(ii)C = [0, 1] \
⋃∞

n=0

⋃3n−1
k=0 ( 3k+1

3n+1 ,
3k+2
3n+1 ) = [0, 1] \

⊔∞
n=0

⊔2n−1
k=0 Ink (easy to see closed)

(iii)remove (easy to see no interior pt and m(C) = 0)

(2)Property:

(i)|C| = ℵ1,m(C) = 0

Cor. Since Lebesgue measure is complete, |L| ≥ |P(C)| = ℵ2 > ℵ = |BR|, so there exists a

Lebesgue measurable but not Borel measurable set.

(ii)Stone(compact(bounded closed) totally disconnected Hausdorff), every pt is boundary pt(no

interior pt(nowhere dense(meagre))) and accumulation pt(isolated pt(perfect))

Pf. For totally disconnected, ∀x < y ∈ C note (∃x < z < y)z /∈ C, so x ∈ [0, z) ∩ C, y ∈

(z, 1] ∩ C then totally separated hence totally disconnected.

(iii)Generally speaking, a perfect totally disconnected subset on R is homeomorphic to C.

(3)Generalization:

(i)Generalized Cantor set K =
⋂∞

0 Kj where K0 = [0, 1], Kj is obtained by removing the open

middle-αj (0 < αj < 1) from each of the intervals that make up Kj−1.

(a)m(K) = limn→∞
∏n

1 (1− αj)

(b)Stone(compact(bounded closed) totally disconnected Hausdorff), every pt is boundary

pt(no interior pt(nowhere dense(meagre))) and accumulation pt(isolated pt(perfect))

(c)Usually replace middle-αj by α3−j (0 < α ≤ 1), then m(K) = 1− α.

(ii)Cantor dust
∏n

1 C
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(a)(∀x ∈ [0, 2])(∃a, b ∈ C)x = a+ b

(b)Compared to Steinhaus, [−1, 1] ⊆ C − C while m(C) = 0

(iii)Cantor function c : [0, 1] → [0, 1], x 7→


∞∑
1

aj
2j

x =

∞∑
1

2aj
3j

∈ C

sup
y<x,y∈C

c(y) o.w.

is notorious coun-

terexample for continuous but not absolutely continuous function.

Pf. increasing + surjection → continuous. By m(C) = 0, ∀δ > 0∃M∃xk < yk ∈ [0, 1]

where 1 ≤ k ≤M s.t.
∑M

1 (yk − xk) < δ and
∑M

1 (c(yk)− c(xk)) = 1.

Lemma 5.4.9 (cube approximation)

For measurable E ⊆ Rn with m(E) > 0, 0 < λ < 1, there exists a cube I s.t. λm(I) < m(I ∩ E).

Moreover, there exists E ⊆ [0, 1] with m(E) > 0 s.t. ∀interval I ⊆ [0, 1], 0 < m(E ∩ I) < m(I).

Proof. Regular measure + open decomposition + pigeonhole principle.

Let M be the set of closed intervals in [0, 1] with rational endpoints, note M is countable so denoted by {Ii}∞1 .

Let X is CTDP mean X is a compact totally disconnected subset of [0, 1] that has positive measure.

Claim ∀I ∈ M∃CTDP A ⊆ I s.t. (∃J ∈ M)J ⊆ I \ A, it holds with generalized Cantor set. Construct

{Ai}∞1 , {Bi}∞1 as follows:

(i)By Claim, ∃CTDP A1 ⊆ I1,M ∋ J ⊆ I \A1, then ∃CTDP B1 ⊆ J . Hence get A1, B1 ⊆ I1 are disjoint and

CTDP.

(ii)Once {Ai}n−1
1 , {Bi}n−1

1 are chosen, note
⋃n−1

1 (Ai∪Bi) is CTDP, so ∃M ∋ J ⊆ In\Cn. Similarly, ∃An, Bn ⊆

J ⊆ In are disjoint and CTDP.

Let E =
⋃∞

1 Ai, then ∀interval I ⊆ [0, 1], ∃M ∋ Im ⊆ I. Hence Am, Bm ⊆ I, 0 < m(Am) ≤ m(E ∩ I) <

m(E ∩ I) +m(Bm) ≤ m(I).

Theorem 5.4.10 (Lebesgue’s Density Theorem)

(For Lebesgue measurable A ⊆ Rn, the “boundary” is negligible. The “density” of A is 0 or 1 at a.e. pt

in Rn)

∀E ⊆ R, m∗(E△ϕ(E)) = 0 where ϕ(E) := {x ∈ R : limh→0
m∗(E∩[x−h,x+h])

2h = 1}.

Proof. Suffice to show m∗(E \ϕ(E)) = 0 for ϕ(E)\E = Ec \ϕ(E)c ⊆ Ec \ϕ(Ec). WLOG assume E is bounded.

Note E \ ϕ(E) =
⋃∞

1 An where An = {x ∈ E : limh→0
m∗(E∩[x−h,x+h])

2h < 1− 1
n}, ∀A := An∀ϵ > 0∃A ⊆ G open

s.t. m(G) < m∗(A) + ϵ.

∀a ∈ A, pick an open interval I with rational endpoints s.t. a ∈ I ⊆ G and m∗(E ∩ I) < (1 − 1
n )m(I), which

gives a countable cover of A. Note m∗(A) ≤ m(
⋃∞

1 In), so (∃N ∈ N)m∗(A) − ϵ < m(
⋃

n≤N In). By Vitali

Covering Lemma, there exists disjoint subcollection {Inj}mj=1 s.t.
⋃

n≤N In ⊆
⋃

j≤m 3Inj , let X =
⊔

j≤m Inj

then m∗(A)− ϵ < m(
⋃

j≤m 3Inj ) ≤ 3
∑

j≤mm(Inj ) = 3m(X).

Note m(X) − ϵ = m(G) − m(G \ X) − ϵ < m∗(A) − m∗(A \ X) ≤ m∗(A ∩ X) ≤
∑

j≤mm∗(A ∩ Inj
) ≤∑

j≤mm∗(E ∩ Inj
) ≤

∑
j≤m(1− 1

n )m(Inj
) = (1− 1

n )m(X), so m(X) < nϵ then m∗(A) < ϵ(1 + 3n), let ϵ → 0
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get m∗(A) = 0.

Theorem 5.4.11 (Steinhaus)

For measurable E ⊆ Rn with m(E) > 0, (∃δ > 0)Bδ(0) ⊆ E − E

Proof. Give two method:

(A)By Lebesgue’s Density Theorem, ∃e ∈ E ∩ ϕ(E), pick ϵ = 1
4 > 0 then ∃δ > 0 s.t. m([e−δ,e+δ]\E)

2δ < ϵ.

∀x ∈ [− δ
2 ,

δ
2 ], note m({y ∈ [e− δ

2 , e+
δ
2 ] : y /∈ E}) < 2δϵ and m({y ∈ [e− δ

2 , e+
δ
2 ] : x+ y /∈ E}) < 2δϵ, hence

m({y ∈ [e− δ
2 , e+

δ
2 ] : y ∈ E, x+ y ∈ E}) ≥ δ − 4δϵ > 0. So [− δ

2 ,
δ
2 ] ⊆ E − E.

(B)By cube approximation, ∃I with 3
4m(I) < m(I ∩ E). Suppose not, then ∃|x| < m(I)

2 s.t. E ∩ (E + x) = ∅,

hence (I∩E)∩ ((I∩E)+x) = ∅. So 3
2m(I) < 2m(I∩E) = m((I∩E)∩ ((I∩E)+x)) ≤ m(I∩ (I+x)) < 3

2m(I),

contradiction.

Theorem 5.4.12 (Vitali)

For E ⊆ R with m∗(E) > 0, there exists Lebesgue nonmeasurable F ⊆ E.

Proof. WLOG assume E ⊆ [0, 1]. By Choice, let V be the set of representatives of elements of E/Q. Suppose

V is Lebesgue measurable, then ∞ × m(V ) = m(
⊔

r∈Q∩[−1,1](V + r)) ≤ m([−1, 2]) ≤ 3 ⇒ m(V ) = 0, hence

m∗(E) ≤ m(
⊔

r∈Q∩[−1,1](V + r)), contradiction.

5.5 Integration

Definition 5.5.1 (modes of convergence)

For measurable E, {fn}∞1 , f , the mode of fn → f on E is

(1)a.e. (pointwise) iff µ({x ∈ E : (∃ϵ > 0)(∀N ∈ N)(∃n ≥ N)|fn(x)− f(x)| ≥ ϵ}) = 0.

(2)uniformly iff (∀ϵ > 0)(∃N ∈ N)(∀n ≥ N)(∀x ∈ E)|fn(x)− f(x)| < ϵ.

(a)compact uniformly iff (∀E ⊇ K compact)fn|K → f |K uniformly.

(b)almost uniformly iff (∀ϵ > 0)(∃E ⊇ Eϵ ∈ M∧ µ(E) < ϵ)fn|E\Eϵ
→ f |E\Eϵ

uniformly.

(3)in Lp iff (∀ϵ > 0)(∃N ∈ N)(∀n ≥ N)(
∫
E
|fn − f |pdµ)

1
p < ϵ.

(4)in measure iff (∀δ > 0)(∀ϵ > 0)(∃N ∈ N)(∀n ≥ N)µ({x : |fn(x)− f(x)| ≥ ϵ}) < ϵ.

Remark 5.5.1

(1)WARNING: There’s an annoying point that in all this definition above, we need fn, f to be finite

a.e. (probably only a.e. pointwise not need, so if we write fn → f (except a.e.), it imply the condition

finite a.e.), then these definitions are on X \ E
⋃∞

1 En where fn is finite on X \ En and f is finite on

X \ E.

(2)Note “a.e.”, “in Lp” and “in measure” are relevant to the measure µ we pick, usually it is Lebesgue

measure m.

Note that convergence of almost uniform NOT means that the sequence converges uniformly a.e. as
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might be inferred from the name.

(3)It will be useful to keep in mind the following examples on R:

(i)fn = n−1χ[0,n] (ii)fn = χ[n,n+1] (iii)fn = nχ[0,1/n] (iv)fn = χ[ j

2k
, j+1

2k
] where n = 2k + j with

0 ≤ j < 2k

f → 0 a.e. (i)(ii)(iii); f → 0 uniformly (i); f → 0 in L1 (iv); f → 0 in measure (i)(iii)(iv). Note (iv)

NOT converges for any x ∈ [0, 1].

(4)To interchange ∀ and a.e., it need the underset of ∀ is countable.

Theorem 5.5.1 (inequality)

(1)(Linearity) For f, g ∈ L1, c ∈ R, then
∫
(f + cg) =

∫
f + c

∫
g.

(2)(Triangle) For f ∈ L1, then |
∫
f | ≤

∫
|f |, equality holds when exists α s.t. αf = |f | a.e.

(3)(Monotone) For f, g ∈ L1, f ≤ g, then
∫
f ≤

∫
g.

(4)(Chebyshev) For A > 0, µ({|fn − f | ≥ A}) ≤ 1
A

∫
|fn − f |dµ.

(5)(Hölder) For conjugate exponents p, q, f ∈ Lp, g ∈ Lq, then fg ∈ Lr and ||fg||1 ≤ ||f ||p||g||q,

equality holds when exists α, β ∈ [0,∞) not all zero s.t. α|f |p = β|g|q a.e.

(weighted) Specially, for conjugate exponents p, q, f ∈ Lp, g ∈ Lq, nonnegative w ∈ L1, then

|
∫
fgw| ≤ (

∫
|f |pw)

1
p (
∫
|g|qw)

1
q .

Moreover, for conjugate exponents p, q, measurable f , then ||f ||p = supg∈Lq,||g||q=1

∫
fg.

(6)(Minkowski) For p ∈ [0,∞], {fn}m1 ⊆ Lp, ||
∑m

1 fn||p ≤
∑m

1 ||fn||p, equality holds when exists

αn ∈ [0,∞) not all zero s.t. αnf
p
n equals a.e.

(7)(Jensen) For convex Ω, convex φ : Ω → R, m(E) < ∞, L1 ∋ f : E → Ω, then φ( 1
m(E)

∫
E
f) ≤

1
m(E)

∫
E
φ ◦ f .

Proof. (5)Let A = ||f ||p, B = ||g||q, assume AB ̸= 0 o.w. f = 0 a.e. or g = 0 a.e. By Young,
∫ |fg|

AB ≤∫
( 1p

|f |p
Ap + 1

q
|g|q
Bq ) = 1.

(6)Let F = |
∑m

1 fn|p−1 and q be the conjugate exponent of p, then
∫
|
∑m

1 fn|p ≤
∫
F
∑m

1 |fk| ≤
∑m

1 (
∫
F q)

1
q (
∫
|fk|p)

1
p =

(
∫
|
∑m

1 fn|p)1−
1
p
∑m

1 (
∫
|fn|p)

1
p .

(7)Note y0 := 1
m(E)

∫
E
f ∈ Ω, o.w. by convex Ω, ∃η ∈ Ω s.t. (∀y ∈ Ω) < y − y0, η >< 0 since {< y − y0, η >:

y ∈ Ω} is open, then < y0, η >=
1

m(E)

∫
E
< f(x), η > dm(x) << y0, η >.

By convex φ, ∃γ ∈ Ω s.t. (∀y ∈ Ω)φ(y) ≥ φ(y0)+ < γ, y − y0 >, then
1

m(E)

∫
E
φ ◦ f ≥ 1

m(E)

∫
E
(φ(y0)+ <

γ, f(x)− y0 >)dm(x) ≥ φ(y0).

Remark 5.5.2

f ∈ L1, then ||f ||1 is absolutely continuous, i.e. (∀ϵ > 0)(∃δ > 0)(∀E ⊇ ω ∈ M∧µ(ω) < δ)
∫
ω
|f |dµ < ϵ.

Specially limM→∞
∫
|f |≥M

|f |dµ = 0.

Pf. Exists increasing simple function φn → |f | pointwise, then limE⊇µ∈M,µ(ω)→0+
∫
ω
|f | ≤

limE⊇µ∈M,µ(ω)→0+
∫
ω
(|f | −φn) + limE⊇µ∈M,µ(ω)→0+

∫
ω
φn ≤

∫
E
(|f | −φn) =

∫
E
|f | −

∫
E
φn, let n→ ∞

and by MCT.
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Theorem 5.5.2 (Convergence)

For measure space (X,M, µ)

(1)(Monotone Convergence Theorem (MCT for short)) For nonnegative measurable {fn}∞1 and

fn ≤ fn+1,∀n ≥ 1, a.e. x ∈ X, then
∫
limn→∞ fn = limn→∞

∫
fn.

(for series) For nonnegative measurable {fn}∞1 , then
∫ ∑∞

n=1 fn =
∑∞

n=1

∫
fn.

(2)(Fatou) For nonnegative measurable {fn}∞1 ,
∫
(limn→∞ fn) ≤ limn→∞

∫
fn.

(3)(Dominated convergence Theorem (DCT for short)) For measurable {fn}∞1 , g ∈ L1 s.t. |fn| ≤

g,∀n ≥ 1, a.e. x ∈ X, if fn → f a.e., then f ∈ L1 and
∫
f = limn→∞

∫
fn.

(for series) For {fj} ⊆ L1 s.t.
∑∞

1

∫
|fj | < ∞, then

∑∞
1 fj is absolutely convergent a.e. and∫ ∑∞

1 fj =
∑∞

1

∫
fj .

(corollary of DCT and Riesz) For measurable {fn}∞1 , g ∈ L1 s.t. |fn| ≤ g,∀n ≥ 1, a.e. x ∈ X,

if fn → f in measure, then f ∈ L1 and
∫
f = limn→∞

∫
fn.

(4)(Egorov; Littlewood’s 3rd Principal)

(Every convergent sequence of functions is nearly uniformly convergent)

fn → f a.e. on E + µ(E) <∞ + f <∞ a.e. ⇒ fn → f almost uniformly on E.

(5)fn → f uniformly ⇒ fn → f almost uniformly ⇒ fn → f a.e. + fn → f in measure.

(6)(Riesz) fn → f in measure ⇒ (∃{fnk
} ⊆ {fn})fnk

→ f, k → ∞ a.e.

(corollary of Egorov and Riesz) For µ(E) < ∞, measurable fn, f < ∞ a.e., then fn → f in

measure iff (∀{fn,k} ⊆ {fn})(∃{fn,k,i ⊆ {fn,k}})fn,k,i → f, i→ ∞ a.e.

(7)fn → f in L1 ⇒ fn → f in measure.

(8)If sequence {fn} of measurable functions is Cauchy in measure, i.e. (∀ϵ > 0) limm→∞,n→∞ µ({x :

|fn(x)− fm(x)| ≥ ϵ}) = 0, then ∃f s.t. fn → f in measure. Moreover, if fn → g in measure, then g = f

a.e.

(Vitali Convergence Theorem)

Proof. (1)WLOG assume fn ≤ fn+1,∀n ≥ 1∀x ∈ X since m(
⋃∞

n=1{fn > fn+1}) = 0, (Trick: for measurable,

integrable and integral etc., there’s no difference of a.e. and pointwise) and f(x) = limn→∞ fn(x) exists in R.

For each n ≥ 1, pick an increasing sequence {φn,k}∞1 of simple functions s.t. φn,k → min{fn, n} pointwise.

(Trick: use cutoff function to approximate ∞)

Let ϕn = max1≤i≤n{φi,n}, then {ϕn}∞1 is an increasing sequence of simple functions and ϕn → f pointwise.

Note if MCT holds for simple function, then f ≥ fn ≥ ϕn, so
∫
f = lim

∫
f ≥ lim

∫
fn ≥ lim

∫
ϕn =

∫
f .

Suffice to show (∀f ≥ g simple) lim
∫
ϕn ≥

∫
g, fix 0 < c < 1 and let En := {ϕn ≥ cg}, hence {En} is increasing

and X =
⋃
En. So

∫
ϕn ≥

∫
En
ϕn ≥ c

∫
En
g, then let n→ ∞ and c→ 1−.

(2)By MCT,
∫
(lim fn) = limn→∞

∫
(infk≥n fk) ≤ limn→∞ infk≥n

∫
fk = lim

∫
fn.

(3)Trivial for f and f ∈ L1. By Fatou,
∫
g+

∫
f ≤ lim

∫
(g+fn) =

∫
g+lim

∫
fn and

∫
g−

∫
f ≤ lim

∫
(g−fn) =∫

g − lim
∫
fn.

(4)By fn → f a.e., µ(
⋃∞

i=1

⋂∞
N=1

⋃∞
k=N E{|fk − f | ≥ 1

i }) = 0. So limN→∞
⋃∞

k=N E{|fk − f | ≥ 1
i } = 0, then

∀ϵ > 0∀i ≥ 1∃Ni ≥ 1 s.t. µ(
⋃∞

k=Ni
E{|fk − f | ≥ 1

i }) < ϵ2−i, let F = E \
⋃∞

i=1

⋃∞
k=Ni

E{|fk − f | ≥ 1
i }.

(6)By fk → f in measure, then pick subsequence {fkj} s.t. m(E{|fkj −f | ≥ 1
j }) ≤

1
2j . Let EN =

⋃∞
j=N E{|fkj −
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f | ≥ 1
j }, F =

⋂∞
N=1EN , note {EN} monotone decreasing and m(EN ) ≤ 1

2N−1 so m(F ) = 0.

∀x ∈ E \ F∃N ≥ 1 s.t. x /∈ EN i.e. (∀j ≥ N)|fkj (x)− f(x)| < 1
j , get fkj → f pointwise on E \ F .

(8)Pick subsequence {fnj} s.t. µ(Ej := {|fnj − gnj+1 | ≥ 2−j}) ≤ 2−j . Let Fk =
⋃∞

j=k Ej and F =
⋂∞

1 Fk, then

µ(Fk) ≤ 21−k, µ(F ) = 0 and {fnj} is pointwise Cauchy on F c
k . Let f(x) =

lim fnj (x) x ∈ F c

0 x ∈ F
, then gj → f

in measure.

Hence fn → f in measure, since {|fn − f | ≥ ϵ} ⊆ {|fn − fnj | ≥ 1
2ϵ} ∪ {|fnj − f | ≥ 1

2ϵ}. And f = g a.e., since

{|g − f | ≥ ϵ} ⊆ {|f − fn| ≥ 1
2ϵ} ∪ {|fn − g| ≥ 1

2ϵ}.

Theorem 5.5.3 (Function Approximation)

(1)For nonnegative measurable f , there exists an increasing sequence {φn}∞1 of simple function s.t.

φ→ f pointwise and φn → f uniformly on any set on which f is bounded.

(2)f ∈ L1(µ), ϵ > 0, there is an integrable simple function φ = ΣajχEj s.t.
∫
|f − φ| < ϵ. If µ is

a Lebesgue-Stieltjes measure on R, then i could be finite; moreover, exist continuous g with compact

support ||f − g||L1 < ϵ

Theorem 5.5.4

If f ∈ L1(m) and ϵ > 0, then ∃ simple φ = ΣN
1 ajχRj

where Rj is a product of intervals s.t.∫
|f − φ| < ϵ and ∃ continuous g that vanishes outside a bounded set s.t.

∫
|f − g| < ϵ

Proof. In thm above, approximate f by simple functions, then use above (iii) to approximate the latter

by function φ of the desired form. Finally, approximate φ by continuous function by applying an obvious

generalization of thm above

[Lusin; Littlewood’s 2nd Principal] (Every measurable function is nearly continuous)

For measurable E ⊆ Rn, f : E → R, then f is measurable iff (∀ϵ > 0)(∃E ⊇ F closed)m(E \F ) < ϵ

and f |F is continuous.

⇒: WLOG assume E is bounded o.w. consider E ∩ {k − 1 ≤ |x| < k} and pick ϵ2−k. By

Simple Function Approximation, ∃φn → f pointwise where {φn}∞1 is an increasing sequence of simple

functions. ∀φn =
∑Nn

i=1 aniχEni
∃Eni ⊇ Fni closed s.t. m(Eni \ Fni) < ϵ2−i−n, let Fn =

⋃Nn

i=1 Fni then

m(E \ Fn) < ϵ2−n.

By Egorov, (∃E ⊇ F0 closed)m(E \F0) < ϵ and φn → f uniformly on F0. Let F =
⋂∞

n=0 Fn then E ⊇ F

is closed, m(E \ F ) < 2ϵ, φn|F is continuous hence f |F is continuous.

⇐: ∀n ∈ N∃E ⊇ Fn closed s.t. m(E \ Fn) ≤ 1
n and f |Fn is continuous. Let H =

⋃∞
n=1 Fn then H is an

Fσ set hence measurable and m(E \H) = 0.

∀a ∈ R, {f > a} =
⋃∞

n=1{x ∈ Fn : f(x) > a} ∪ {x ∈ E \H : f(x) > a}. Note {x ∈ Fn : f(x) > a} is

relatively open wrt. Fn hence measurable, {x ∈ E \H : f(x) > a} is a null set hence measurable.

(3)(Uniform limit theorem)For topological space X, metric space Y , fn : X → Y converge uniformly

to f : X → Y , if any fn is continuous, then f is continuous.
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Pf. d(f(x), f(y)) ≤ d(f(x), fN (x)) + d(fN (x), fN (y)) + d(fN (y), f(y)).

(Dini) For compact topological space X, increase sequence {fn}∞1 of continuous functions on X,

fn → f pointwise where f is continuous, then fn → f uniformly.

Pf. ∀ϵ > 0, note f − fn is continuous so En := {f − fn < ϵ} is open. Note {En}∞1 is increasing and

X =
⋃∞

1 En, by compact, ∃N ∈ N s.t. X = EN . Hence ∀n ≥ N∀x ∈ X(|f(x)− fn(x)| < ϵ).

Proof. (1)For n ≥ 0, let Ek
n = f−1([k2−n, (k+1)2−n)), Fn = f−1([2n,∞]) and φn =

∑22n−1
k=0 k2−nχEk

n
+2nχFn

.

(2)

Theorem 5.5.5 (Fubini-Tonelli)

For σ-finite measure spaces (X,M, µ), (Y,N , ν),

(1)If E ∈ M⊗N , then x 7→ ν(Ex) and y 7→ µ(Ey) are measurable, and µ×ν(E) =
∫
ν(Ex)dµ(x) =∫

µ(Ey)dν(y).

(2)(Tonelli)If f ∈ L+(X×Y ), then fx, f
y ∈ L+, g(x) :=

∫
fxdν, h(y) :=

∫
fydµ ∈ L+,

∫
fd(µ×ν) =∫

(
∫
f(x, y)dν(y))dµ(x) =

∫
(
∫
f(x, y)dµ(x))dν(y).

(3)(Fubini)If f ∈ L1(µ× ν), then fx, f
y ∈ L1 a.e., a.e.-defined g(x) =

∫
fxdµ, h(y) =

∫
fydν ∈ L1,∫

fd(µ× ν) =
∫
(
∫
f(x, y)dν(y))dµ(x) =

∫
(
∫
f(x, y)dµ(x))dν(y).

For complete σ-finite measure spaces (X,M, µ), (Y,N , ν), completion (X×Y,L, λ) of (X×Y,M⊗N , µ×

ν),

(4)(Tonelli)If f ∈ L+(λ), then fx, f
y ∈ L+ a.e., a.e.-defined x 7→

∫
fxdν, y 7→

∫
fydµ ∈ L+,∫

fdλ =
∫∫

f(x, y)dµ(x)dν(y) =
∫∫

f(x, y)dν(y)dµ(x).

(5)(Fubini)If f ∈ L1(λ), then fx, f
y ∈ L1, a.e.-defined x 7→

∫
fxdν, y 7→

∫
fydµ ∈ L1,

∫
fdλ =∫∫

f(x, y)dµ(x)dν(y) =
∫∫

f(x, y)dν(y)dµ(x).

Proof. (1)WLOG assume µ and ν are finite, because X × Y =
⋃∞

1 (Xj × Yj) where {Xj × Yj} is an increasing

sequence of rectangles of finite measure then consider E∩(Xj×Yj) and use MCT. Let C be the set of E ∈ M⊗N

for which conclusions hold.

For E = A × B, then ν(Ex) = χA(x)ν(B), µ(Ey) = µ(A)χB(y), µ × ν(E) = µ(A)ν(B), so E ∈ C. Suffice to

show C is a monotone class.

For increasing sequence {En} ⊆ C, E =
⋃∞

1 En, then measurable and increasing fn(y) = µ((En)
y) → f(y) =

µ(Ey) pointwise, hence Ey is measurable and by MCT
∫
µ(Ey)dν(y) = lim

∫
µ((En)

y)dν(y) = limµ× ν(En) =

µ× ν(E), so E ∈ C. Similarly, decreasing sequence follows by DCT.

(2)Note it holds for simple function, then Tonelli follows by simple function approximation and MCT.

(3)Note if f ∈ L+(X ×Y ) and
∫
fd(µ× ν) <∞, then g <∞, h <∞ and fx, f

y ∈ L1 a.e. So for f ∈ L1(µ× ν),

Fubini follows by Tonelli.

(4)By Lemma “For E ∈ M×N with µ × ν(E) = 0, then ν(Ex) = µ(Ey) = 0 a.e.” and “For L-measurable f

with f = 0 λ-a.e., then fx, f
y ∈ L1 a.e.,

∫
fxdν =

∫
fydµ = 0 a.e.”.

35



Remark 5.5.3

(1)Usually omit the brackets if condition holds,
∫
(
∫
f(x, y)dµ(x))dν(y) =

∫∫
f(x, y)dµ(x)dν(y) =∫∫

fdµdν.

(2)The condition “σ-finite” “f ∈ L+” or “f ∈ L1” is necessary.

(i)To see fx, f
y is measurable for all x, y,

∫∫
fdµdν,

∫∫
fdνdµ exist but NOT equal, f is non-

negative but NOT measurable, pick X = Y = ω1, M = N is σ-algebra of countable or cocountable sets,

µ = ν : A 7→

0 A countable

1 A cocountable
, E = {(x, y) : y < x}, f = χE .

(ii)To see fx, f
y is measurable for all x, y,

∫∫
fdµdν,

∫∫
fdνdµ exist but NOT equal, f is

measurable and
∫
|f |d(µ × ν) = ∞, pick X = Y = N, M = N = P(N), µ = ν is counting measure,

f : (m,n) 7→


1 m = n

−1 m = n+ 1

0 o.w.

.

(3)Trick: to reverse the order of integration in a double integral
∫∫

fdµdν, first verify
∫
|f |d(µ×ν) <

∞ by Tonelli to evaluate it as an iterated integral, then apply Fubini to get
∫∫

fdµdν =
∫∫

fdνdµ.

Definition 5.5.2 (Integral)

(1)(Riemann integral) For bounded E ⊆ Rn, bounded f : E → R, f is Riemann integrable on E iff

(∃E ⊆ R cube) infP partition of R U(f, P ) = supP partition of R L(f, P ) where

(i)f : R→ R is extended by R \ E → {0}

(ii)U(f ;P ) =
∑

r∈P supx∈r f(x)|r| is upper Darboux sum and inf U(f, P ) is upper Riemann integral.

(iii)L(f ;P ) =
∑

r∈P infx∈r f(x)|r| is lower Darboux sum and supL(f, P ) is lower Riemann integral.

Then this value is Riemann integral of f on E, written
∫
E
f .

(2)(Integral) For measure space (X,M, µ) where µ is a positive measure,

(i)the integral of nonnegative simple function φ =
∑n

1 aiχXi
on X is

∫
φdµ =

∑n
1 aiµ(Xi).

(ii)the integral of nonnegative simple function φ =
∑n

1 aiχXi
on E ∈ X is

∫
E
φ =

∫
φχE , where

φχE =
∑n

1 aiχXi∩E is a nonnegative simple function. Hence we only define the integral on X below.

(iii)the integral of nonnegative measurable function f : X → [0,∞] is
∫
f = sup{

∫
φ : 0 ≤ φ ≤

f, φ simple}, denote the set of nonnegative measurable functions on X by L+(X;µ) (L+ for short).

(iv)for real-valued measurable function f : X → [−∞,∞], f is

(a)integrable iff f+, f− are integrable, then
∫
f =

∫
f+ −

∫
f− is the integral of f .

(b)extended integrable iff at least one of f+, f− is integrable, then extend integral to ±∞.

(v)for complex-valued measurable function f : X → C, f is integrable iff

(ℜ f)+, (ℜ f)−, (ℑ f)+, (ℑ f)− are integrable, then
∫
f =

∫
(ℜ f)+ −

∫
(ℜ f)− + i

∫
(ℑ f)+ − i

∫
(ℑ f)−

is the integral of f .

(vi)for vector-valued measurable function f = (fi)
T
i∈I , f is integrable iff fi is integrable for all i ∈ I,

then
∫
f = (

∫
fi)

T
i∈I is the integral of f .

(3)(p-seminorm) For 0 < p <∞, complex-valued measurable function f : X → Cn,
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(i)p-seminorm of f is ||f ||p = (
∫
|f |pdµ)

1
p .

(ii)essential supremum of f is esssup f = infµ(N)=0 supx∈X\N f(x).

(iii)essential inferior of f is essinf f = supµ(N)=0 infx∈X\N f(x).

(iv)||f ||∞ = esssup |f |.

f is p-integrable iff ||f ||p < ∞, then FOR p ≥ 1 denote the set of all p-integrable functions on X by

Lp(X;Cn;µ) (Lp(X;µ) or Lp for short). f is essential bounded iff ||f ||∞ <∞, then denote the set of all

essential bounded functions on X by L∞(X;Cn;µ).

Remark 5.5.4

(1)The choice of cube R NOT change the value of Darboux sum, so we can replace “∃E ⊆ R cube”

by ∀E ⊆ R cube.

Btw, it could be proved that “f is Riemann integrable on R iff (∀ϵ > 0)(∃P partition of R)U(f, P )−

L(f, P ) < ϵ”. Then it is a trick that let ωF = supx∈F f(x)−infx∈F f(x) and get “f is Riemann integrable

iff lim||P ||→0+
∑

F∈P ωF = 0”, which would be an easy way to show Lebesgue Criterion.

(2)For bounded E ⊆ Rn, E is Jordan measurable iff χE is Riemann integrable, then denote
∫
E
χE

by (Jordan) content (or Peano content) |E|. Similarly, outer (Jordan) content is inf U(χE , P ) while

inner (Jordan) content is supL(χE , P ).

Then we could verify it is a content. Although we could define Jordan content first, then define the

integral viz. the restriction of Riemann integral for Jordan measurable space, but it is not worthy of an

arduous work.

(3)For
∫
φdµ, written

∫
φ for short and

∫
φ(x)dµ(x) for long. Specially for Lebesgue measure, we

always denote
∫
φ(x)dµ(x) by

∫
φ(x)dx for Lebesgue-Stieltjes integral.

(4)Lp(µ) is a Banach space, note integral is a linear functional on it.

To see Bolzano-Weierstrass, Heine-Borel, Accumulation Point Theorem NOT hold, Pick Lp(R),

fn = χ[n,n+1], bounded closed F = {fn}, open cover Bn := {g ∈ Lp : ||g − fn||p < 1
2}.

(5)There’s a problem about Riemann integral. It can be NOT integrable after cutoff, while Lebesgue

integral always holds.

To see f ∈ C([0, 1]), g(x) =

f(x) f(x) ≥ 1

0 o.w.
is NOT Riemann integrable but Lebesgue integrable

on [0, 1], pick f =

 1 x ∈ K

1− d(x,K) o.w.
where K is a generalized Cantor set.

Theorem 5.5.6 (Lebesgue Criterion)

For bounded E ⊆ Rn, bounded f : E → R,

(i)If f is Riemann integrable, then f is Lebesgue integrable and two integrals are equal.

(ii)f is Riemann integrable iff the set of discontinuities of f on E has Lebesgue measure zero.

Proof. Note ∃{Pk}∞1 is a sequence of successive refinement of partitions of rectangle R ⊇ E, so limU(f, Pk)
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equals the upper Riemann integral while limL(f, Pk) equals the lower Riemann integral. By L(f, Pk), U(f, Pk)

can be represented as Lebesgue integrals of simple functions lk and uk, then lk → l and uk → u pointwise and

l ≤ f ≤ u. By Dominated Convergence Theorem,
∫
ldm = limL(f, Pk), limU(f, Pk) =

∫
udm.

For (i), if f is Riemann integrable, then
∫
l = limL(f, Pk) = limU(f, Pk) =

∫
u so

∫
f =

∫
l =

∫
u.

For (ii), choose Pk s.t. ||Pk|| < 1
k , note f is continuous at x iff l(x) = u(x), so f is Riemann integrable iff∫

u =
∫
l iff u = l a.e. iff the set of discontinuities of f on E has Lebesgue measure zero.

Remark 5.5.5

(1)Pick χE , then get Corollary

(i)For Jordan measurable E ⊆ Rn, E is Lebesgue measurable and |E| = m(E).

(ii)For bounded E ⊂ Rn, E is Jordan measurable iff m(∂E) = 0.

Actually for bounded E ⊆ Rn, the inner content of E is the Lebesgue measure of Int(E), and the

outer content of E is the Lebesgue measure of E.

(2)To see there exists a Jordan nonmeasurable bounded domain, pick K ⊆ [0, 1] is generalized

Cantor set with positive measure, then U = ((0, 1) × (−1, 1) \ (K × [0, 1])) is bounded domain and

∂U = [0, 1]× [−1, 1] \ U has positive measure.

To see there exists an Riemann integrable function on a Jordan nonmeasurable set that is not zero

at every pt, pick χC on C where C is the Cantor set.

To see there exists a positive function on [0, 1] with lower Riemann integral 0, pick Riemann function

R : R → R, x 7→


1/p x = q/p, p ∈ Z+, q ∈ Z, gcd(p, q) = 1

1 x = 0

0 x /∈ Q

then replace x 7→ 0 x /∈ Q by x 7→ 1 x /∈

Q.

To see there exist a Riemann integrable function f on [0, 2] and a continuous bijective function

g : [0, 2] → [0, 2] s.t. f ◦ g is not Riemann integrable, pick f = χ2C where C is the Cantor set,

h(x) = x + C(x) : [0, 1] → [0, 2] where C(x) is the Cantor function, g = 2h−1 since h is strictly

increasing and continuous. The set of continuities of f is 2C, then the set of continuities of f ◦ g is

g−1(2C) = h(C), note m(h(C)) = µh(h
−1(h(C))) = µh(C) = m(C) + µC(C) = 1. (Use the property of

Lebesgue-Stieltjes measure “For continuous increasing function G on [a, b], if E ⊆ [G(a), G(b)] is a Borel

set, then m(E) = µG(G
−1(E))”.)

(3)Deeply speaking, the essential difference between Jordan content and Lebesgue measure is that

Jordan content is a 1-step approximation while Lebesgue measure is a 2-step approximation. The

first approximates from the outside by open sets and from the inside by compact sets, and the second

approximates the open sets from the inside and the compact sets from the outside by finite unions of

cubes.

Proposition 5.5.7

(1)For f, g ∈ L1, then (∀E ∈ M)
∫
E
f =

∫
E
g iff

∫
|f − g| = 0 iff f = g a.e.

(2)(1st Mean Value Theorem for integral) For f bounded, nonnegative g ∈ L1, then ∃ infx∈E f(x) ≤
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η ≤ supx∈E f(x) s.t.
∫
E
fg = η

∫
E
g. Specially, if E is connected and f is continuous, then ∃ξ ∈ E s.t.∫

E
fg = f(ξ)

∫
E
g.

Proof. (1)Suffice to show
∫
|f−g| = 0⇒ (∀E ∈ M)

∫
E
f =

∫
E
g⇒ f = g a.e. First |

∫
E
f−

∫
E
g| ≤

∫
χE |f−g| ≤∫

|f − g| = 0. Second suppose not, then at least one of f+, f− be nonzero on a set of positive measure. WLOG

m({f+ > 0}) > 0, then
∫
{f+>0} f −

∫
{f+>0} g > 0 contradiction.

(2)If
∫
E
g = 0, then g = 0 a.e. so

∫
E
fg = 0. Assume

∫
E
g > 0, then m({g > 0}) > 0 so let η =

∫
E

fg∫
E

g
.

Know f(E) is connected, if η /∈ f(E), then wlog assume η = inf f(E). So m({fg > ηg}) = m({g > 0}) get∫
E
fg > η

∫
E
g contradiction.

Remark 5.5.6

(1)Integral makes no difference if alter functions on null sets. So redefine L1(µ) be the set of

equivalent classed of a.e.-defined integrable functions on X. It has two advantages:

(i)For completion µ, there exists a natural bijection between L1(µ) and L1(µ), so we can identify

them.

(ii)Then positivity holds. L1 is a metric space with d(f, g) =
∫
|f − g| while seminorm becomes

norm.

Exercise 5.5.1

(1)m(E) < ∞, f ∈ L∞, then limp→∞ ||f ||p = M := ||f ||∞. Moreover, if M > 0, then

limp→∞

∫
E

|f |p+1∫
E

|f |p =M .

(2){fn}∞1 ⊆ L+, fn → f a.e. and
∫
f = lim

∫
fn < ∞, then (∀E ∈ M)

∫
E
f = lim

∫
E
fn. However,

it NOT holds if
∫
f = lim

∫
fn = ∞.

Proof. (1)limp→∞(
∫
E
|f |p)

1
p ≤ limp→∞M(m(E))

1
p =M , wlog assumeM > 0, limp→∞(

∫
E
|f |p)

1
p ≥ limp→∞(

∫
E{|f |>M−ϵ} |f |

p)
1
p =

(M − ϵ) limp→∞m(E{|f | > M − ϵ})
1
p =M − ϵ for any ϵ > 0.

Similarly limp→∞

∫
E

|f |p+1∫
E

|f |p ≤M , note limp→∞

∫
E{|f|<M−ϵ} |f |p∫

E
|f |p ≤ limp→∞

∫
E{|f|<M−ϵ} |f |p∫

E{|f|>M−ϵ/2} |f |p ≤ m(E{|f |≤M−ϵ})
m(E{|f |≥M−ϵ/2}) limp→∞

(M−ϵ)p

(M−ϵ/2)p =

0 for any ϵ > 0, then limp→∞

∫
E

|f |p+1∫
E

|f |p ≥ (M − ϵ) limp→∞

∫
E{|f|≥M−ϵ} |f |p∫

E
|f |p =M − ϵ.

(2)By Fatou,
∫
E
f =

∫
lim fnχE ≤ lim

∫
fnχE ≤ lim

∫
E
fn, similarly

∫
Ec f ≤ lim

∫
Ec fn, then consider the sum.

Counterexample, X = R, µ = m,En = (−∞, 0) ∪ [n, n+ 1], fn = χEn
, E = [0,∞).

Definition 5.5.3

gamma function Γ(z) =
∫∞
0
tz−1e−tdt (ℜ z > 0) Well-defined:

∫ 1

0
|tz−1e−t|dt ≤

∫ 1

0
tℜ z−1dt < ∞ and∫∞

1
|tz−1e−t|dt ≤

∫∞
1
e−t/2 < ∞ Prop: (1)Γ(z + 1) = zΓ(z) by integration by parts

∫ N

ϵ
tze−tdt =

−tze−t|Nϵ + z
∫ N

ϵ
tz−1e−tdt then ϵ → 0, N → ∞ Γ(z + 1) = zΓ(z) can extend Γ to almost(except

for singularities at the nonpositive integers) the entire complex plane (2)Γ(n + 1) = n! (Many of the

applications of the gamma function involve the fact that it provides an extension of the factorial function

to nonintegers)
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Construction of this surface measure is motivated by a familiar fact from plane geometry: define the surface

measure of a subset of the unit sphere in terms of the Lebesgue measure of the corresponding sector of the unit

ball.

Definition 5.5.4

denote {x ∈ Rn : |x| = 1} by Sn−1. If x ∈ Rn \ {0}, polar coordinate of x are r = |x| ∈ (0,∞),

x′ = x
|x| ∈ Sn−1. The map Φ(x) = (r, x′) is a continuous bijection from Rn \ {0} to (0,∞)×Sn−1 whose

(continuous) inverse is Φ−1(r, x′) = rx′. Denote the Borel measure on (0,∞) × Sn−1 by m∗ induced

by Φ from Lebesgue measure on Rn, that is m∗(E) = m(Φ−1(E)). Moreover define measure ρ = ρn on

(0,∞) by ρ(E) =
∫
E
rn−1dr

Theorem 5.5.8

Exists a unique Borel measure σ = σn−1 on Sn−1 s.t. m∗ = ρ × σ. if f is Borel measurable on Rn and

f ≥ 0 or f ∈ L1(m), then
∫
Rn f(x)dx =

∫∞
0

∫
Sn−1 f(rx

′)rn−1dσ(x′)dr

Proof. When f is a characteristic function of a set, is merely a restatement of m∗ = ρ × σ and it follows for

general f by the usual linearity and approximation arguments. Hence we need only to construct σ. If E is a

Borel set in Sn−1, for a > 0 let Ea = Φ−1((0, a]× E) = {rx′ : 0 < r ≤ a, x′ ∈ E}. If it holds when f = χE1 we

must have m(E1) =
∫ 1

0

∫
E
rn−1dσ(x′)dr = σ(E)

∫ 1

0
rn−1dr = σ(E)/n

Therefore define σ(E) to be n · m(E1) since the map E 7→ E1 takes Borel sets to Borel sets and commutes

with unions, intersections and complements. It is clear that σ is a Borel measure on Sn−1. Also, since Ea is

the image of E1 under the map x 7→ ax, it follows from Thm2.44 that m(Ea) = anm(E1) hence if 0 < a < b,

m∗((a, b] × E) = m(Eb \ Ea) =
bn−an

n σ(E) = σ(E)
∫ b

a
rn−1dr = ρ × σ((a, b] × E) Fix E ∈ BSn−1 and let AE

be the collection of finite disjoint unions of sets of the form (a, b]× E. By proposition1.7, AE is an algebra on

(0,∞)× E that the σ-algebra ME = {A× E : A ∈ B(0,∞)}. By the preceding calculation we have m∗ = ρ× σ

on AE and hence by the uniqueness assertion of Thm1.14 m∗ = ρ × σ on ME . But
⋃
{ME : E ∈ BSn−1} is

precisely the set of Borel rectangles in (0,∞)× Sn−1, so another applications of the uniqueness theorem shows

that m∗ = ρ× σ on all Borel sets

Remark 5.5.7

Of course, it can be extended to Lebesgue measurable functions by considering the completion of the

measure σ

Corollary 5.5.9

If f is a measurable function on Rn, nonnegative or integrable, s.t. f(x) = g(|x|) for some function g on

(0,∞), then
∫
f(x)dx = σ(Sn−1)

∫∞
0
g(r)rn−1dr
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Corollary 5.5.10

Let c and C denote positive constants, let B = {x ∈ Rn : |x| < c}. Suppose that f is a measurable

function on Rn (1)If |f(x)| ≤ C|x|−a on B for some a < n, then f ∈ L1(B). However, if |f(x)| ≥ C|x|−n

on B, then f /∈ L1(B) (2)If |f(x)| ≤ C|x|−a on Bc for some (??)a > n, then f ∈ L1(Bc). However, if

|f(x)| ≥ C|x|−n on B, then f /∈ L1(Bc)

Pf. apply above to |x|−aχB and |x|−aχBc

Proposition 5.5.11

(1)If a > 0, then
∫
Rn exp(−a|x|2)dx = (πa )

n/2 (2)σ(Sn−1) = 2πn/2

Γ(n/2) (3)If Bn = {x ∈ Rn : |x| < 1}, then

m(Bn) = πn/2

Γ( 1
2n+1)

(4)Γ(n) = (n− 1)!, Γ(n+ 1
2 ) = (n− 1

2 )(n− 3
2 )(

1
2 )
√
π

Proof. (1)Denote the integral on the left by In. For n = 2, by Corollary2.51, I2 = 2π
∫∞
0
re−ar2dr =

−(πa )e
−ar2 |∞0 = π

a Since exp(−a|x|2) = Πn
1 exp(−ax2j ), Tonelli implies In = (I1)

n. In particular, I1 = (I2)
1/2

so In = (I2)
n/2 = (2)by above and substitution s = r2, πn/2 =

∫
Rn e

−|x|2dx = σ(Sn−1)
∫∞
0
rn−1e−r2dr =

σ(Sn−1)
2

∫∞
0
sn/2−1e−sds = σ(Sn−1)

2 Γ(n2 ) (3)m(Bn) = n−1σ(Sn−1) by definition of σ, and 1
2nΓ(

1
2n) = Γ( 12n+ 1)

by the functional equation for the gamma function. (4)By the functional equation, Γ(n+ 1
2 ) = (n− 1

2 )...(
1
2 )Γ(

1
2 ),

then s = r2, Γ( 12 ) =
∫∞
0
s−1/2e−sds = 2

∫∞
0
e−r2dr =

∫∞
−∞ e−r2dr =

√
π

5.6 Differentiation

Theorem 5.6.1 (The Hahn Decomposition Theorem)

ν signed measure on (X,A), then ∃ positive set P and negative set N s.t. P ⊔ N = X. If P ′,N ′ is

another such pair, then P△P ′ is null for ν

Proof. WLOG assume ν does not obtain the value +∞. m = sup{ν(E) : E positive set}. So exists {Pj} of

positive sets with ν(Pj) → m. Let P =
⋃∞

1 Pj , note positive set closec under countable union, P is a positive

set and ν(P ) = m.

Claim N = X \ P is a negative set. First, N cannot contain any nonnull positive set, o.w. E ⊆ N is positive

with ν(E) > 0, then consider E ∪ P .

Second, by above, if A ⊆ N, ν(A) > 0 , there exist B ⊆ A with ν(B) > ν(A) with ν(A \B) < 0.

If N is not negative, then, we can specify a sequence of subsets {Aj} of N and a sequence {nj} of positive

integers as follows: ni = inf{n : ∃B ⊆ Ai−1, ν(B) > ν(Ai−1) +
1
n} specially n1 = inf{n : ∃B ⊆ N, ν(B) > 1

n},

and Ai is such a set.

Let A =
⋂∞

1 Aj . Then ∞ > ν(A) = limj→∞ ν(Aj) >
∑∞

1
1
nj
, so nj → ∞ as j → ∞.But once again, there

exists B ⊆ A with ν(B) > ν(A) + 1
n for some n ∈ N. For j sufficiently large we have n < nj , and B ⊆ Aj−1,

which contradicts the construction of nj and Aj .

Finally, if P ′, N ′ is another pair, we observe that P \P ′ ⊆ P and P \P ′ ⊆ N ′ so it’s both positive and negative

hence null.
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Remark 5.6.1

(1)Hahn decomposition, it is usually not unique (ν-null sets can be transferred), but it lead to canonical

representation as the difference of two positive measures (2)µ, ν signed measure, are mutually singular

or ν is singular w.r.t. µ, written µ ⊥ ν iff (∃E,F ∈ A)E ∩F = ∅, E ∪F = X,E null for µ, F null for ν

(Informally speaking, mutual singularity means that µ,ν live on disjoint sets)

Definition 5.6.1 (The Jordan Decomposition Theorem)

If ν signed measure, then exists unique positive measures ν+ and ν− s.t. ν = ν+ − ν− and ν+ ⊥ ν−

Proof. Let X = P ∪ N be a Hahn decomposition, define ν+(E) = ν(E ∩ P ) and ν−(E) = −ν(E ∩ N). Then

clearly ν = ν+ − ν− and ν+ ⊥ ν−. If ν = µ+ − µ− and µ+ ⊥ µ−, then assume E,F ∈ M s.t. E ∩ F = ∅,

E ∪ F = X and µ+(F ) = µ−(E) = 0, then X = E ∪ F is another Hahn decomposition, so P△E ν-null, so

(∀A ∈ M)µ+(A) = µ+(A ∩ E) = ν(A ∩ E) = ν(A ∩ P ) = ν+(A).

Remark 5.6.2

(1)ν+, ν− called positive (negative) variation of ν, and ν = ν+ − ν− is Jordan decomposition of ν. total

variation of ν is |ν| := ν++ν− Prop. E ∈ A ν-null iff |ν|(E) = 0 ν ⊥ µ iff |ν| ⊥ µ iff ν+ ⊥ µ and ν− ⊥ µ

(2)observe ν is of the form ν(E) =
∫
E
fdµ where µ = |ν| and f = χP −χN where X = P ∪N is a Hahn

decomposition. (3)L1(ν) = L1(ν+) ∩ L1(ν−) = L1(|µ|) and
∫
fdν =

∫
fdν+ −

∫
fdν− ν is finite (resp.

σ-finite) iff |ν| is finite (resp. σ-finite). (4)absolutely continuous: ν signed measure, µ measure, then

ν ≪ µ iff (∀µ(E) = 0)ν(E) = 0 (extended) ν, µ signed measure, then ν ≪ µ iff ν ≪ |µ| Prop. ν ≪ µ iff

ν1, ν2 ≪ µ iff |ν| ≪ µ ν ≪ µ, ν ⊥ µ, then ν = 0 Pf. X = E ⊔ F , µ(E) = |ν|(F ) = 0 and then |ν|(E) = 0

Theorem 5.6.2

ν finite (σ-finite has counterexample) signed measure, ν ≪ µ iff (∀ϵ > 0)(∃δ > 0)(∀µ(E) < δ)|ν(E)| < ϵ

Proof. Since ν ≪ µ iff |ν| ≪ µ and |ν(E)| ≤ |ν|(E), it suffices to assume ν = |ν| is positive. The left side

is trivial, on the other hand, suppose not. Then ∃ϵ > 0 s.t. (∀n ∈ N)(∃En ∈ M ∧ µ(En) < 2−n)ν(En) ≥ ϵ.

Let Fk =
⋃∞

k En and F =
⋂∞

1 Fk. Then µ(Fk) < 21−k so µ(F ) = 0. But ν(Fk) ≥ ϵ and by ν finite

ν(F ) = lim ν(Fk) ≥ ϵ Thus it is false that ν ≪ µ

If µ is a measure and f is an extended µ-integrable function, the signed measure ν defined by ν =
∫
E
fdµ is

absolutely continuous wrt. µ. It is finite iff f ∈ L1(µ). For complex-valued, also hold, so get:

Corollary 5.6.3

If f ∈ L1(µ), then (∀ϵ > 0)(∃δ > 0)|
∫
E
fdµ| < ϵ whenever µ(E) < δ

We shall use dν = fdµ to express the relationship ν(E) =
∫
E
fdµ
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Lemma 5.6.4

ν, µ finite measures on (X.M), either ν ⊥ µ or ∃ϵ > 0, E ∈ M s.t. µ(E) > 0 and ν ≥ ϵµ on E

Proof. Let X = Pn ⊔ Nn be a Hahn decomposition for ν − n−1µ, P =
⋃∞

1 Pn, N =
⋂∞

1 Nn. Then N is a

negative set for ν − n−1µ, get 0 ≤ ν(N) ≤ n−1µ(N) for all n so ν(N) = 0. If µ(P ) = 0 then ν ⊥ µ, o.w.

µ(Pn) > 0 for some n, and Pn is a positive set for ν − n−1µ

Theorem 5.6.5 (Lebesgue-Radon-Nikodym decomposition theorem)

ν σ-finite signed measure and µ σ-finite positive measure on (X,M). Then ∃ unique σ-finite signed

measures λ, ρ on (X,M) s.t. λ ⊥ µ, ρ≪ µ and ν = λ+ ρ. Moreover, there is an extended µ-integrable

function f : X → R s.t. dρ = fdµ and any two such functions are equal µ-a.e.

Proof. 1 If ν and µ are finite positive measure. Let F = {f : X → [0,∞] : (∀E ∈ M)
∫
E
fdµ ≤ ν(E)}.

F is nonempty since 0 ∈ F . If f, g ∈ F , then h = max(f, g) ∈ F since
∫
E
hdµ =

∫
E∩A

fdµ +
∫
E\A gdµ ≤

ν(E ∩A) + ν(E \A) = ν(E) where A = {x : f(x) > g(x)}. Let a = sup{
∫
fdµ : f ∈ F}, noting a ≤ ν(X) <∞

and choose a sequence {fn} ⊆ F s.t.
∫
fndµ → a. Let gn = max(f1, ..., fn) and f = sup fn, then gn ∈ F , gn

increases pointwise to f , so
∫
gndµ = a hence by MCT

∫
fdµ = a. Claim λ s.t. dλ = dν − fdµ is singular

wrt. µ. If not, then by lemma, ∃E ∈ M, ϵ > 0 s.t. µ(E) > 0 and λ ≥ ϵµ on E. Then ϵχEdµ ≤ dλ, i.e.

(f + ϵχE)dµ ≤ dν so f + ϵχE ∈ F , contradiction. Suffice to show uniqueness. If also dν = dλ′ + f ′dµ then

dλ − dλ′ = (f ′ − f)dµ. Note λ − λ′ ⊥ µ and (f ′ − f)dµ ≪ dµ hence dλ − dλ′ = (f ′ − f)dµ = 0. So λ = λ′

and f = f ′ µ-a.e. 2 if both σ-finite, then X =
⊔∞

1 Aj where ν(Aj), µ(Aj) < ∞ by taking intersection, let

µj(E) = µ(E ∩Aj) and νj(E) = ν(E ∩Aj), use above. 3 ν signed measure, then ν+ and ν−

Remark 5.6.3

Lebesgue decomposition ν = λ + ρ where λ ⊥ µ and ρ ≪ µ. If ν ≪ µ, then dν = fdµ for some f , this

result is Radan-Nikodym Theorem, f is Radan-Nikodym derivative of ν wrt. µ, denote f(the class of

functions equal to f µ-a.e.) by dν
dµ

Proposition 5.6.6

ν σ-finite signed measure and µ, λ σ-finite measure on (X,M) s.t. ν ≪ µ and µ ≪ λ. (1)If g ∈ L1(ν),

then g( dνdµ ) ∈ L1(µ) and
∫
gdν =

∫
g dν
dµdµ (2)ν ≪ λ and dν

dλ = dν
dµ

dµ
dλ λ-a.e.

Proof. By considering ν+ and ν− separately, assume ν ≥ 0.
∫
gdν =

∫
g( dνdµ )dµ is true when g = χE by

definition, then is true for simple functions by linearity then for nonnegative measurable functions by MCT and

finally for functions in L1(ν) by linearity. replace ν, µ by µ, λ and let g = χE
dν
dµ , obtain ν(E) =

∫
E

dν
dµdµ =∫

E
dν
dµ

dµ
dλdλ for all E ∈ M.
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Corollary 5.6.7

(1)µ ≪ λ, λ ≪ µ, then dλ
dµ

dµ
dλ = 1 a.e. (wrt. λ or µ) (2)(simple but important observation) If µ1, ..., µn

are measures on (X,M), then ∃ measure µ s.t. µj ≪ µ for all j, namely µ =
∑n

1 µj .

For complex measure, let νr, νi be the real and imaginary parts of ν (note νr, νi are signed measure that don’t

assume the values ±∞ hence finite) ν ⊥ µ iff νa ⊥ µb where a, b ∈ {r, i} ν ≪ λ iff νr ≪ λ and νi ≪ λ

Theorem 5.6.8 (Lebesgue-Radan-Nikodym Theorem)

ν complex measure, µ σ-finite positive measure on (X,M), then ∃ complex measure λ and f ∈ L1(µ)

s.t. λ ⊥ µ and dν = dλ+ fdµ. If also λ′ ⊥ µ and dν = dλ′ + f ′dµ, then λ = λ′ and f = f ′ µ-a.e.

Definition 5.6.2

total variation of complex measure ν is the positive measure |ν| determined by ”if dν = fdµ where

µ positive measure, then d|ν| = |f |dµ”. Well-defined: 1 we can take µ = |νr| + |νi| and use Radan

to get dν = fdµ exist 2 if dν = f1dµ1 = f2dµ2, let ρ = µ1 + µ2, then f1
dµ1

dρ dρ = dν = f2
dµ2

dρ dρ so

that f1
dµ1

dρ = f2
dµ2

dρ ρ-a.e. Since
dµj

dρ is nonnegative, |f1|dµ1

dρ = |f1 dµ1

dρ | = |f2 dµ2

dρ | = |f2|dµ2

dρ ρ-a.e. Thus

|f1|dµ1 = |f1|dµ1

dρ dρ = |f2|dµ2, hence the definition of |ν| is independent of the choice of µ and f 3 This

definition agrees with the previous definition when signed measure, for in that case dν = (χP − χN )d|ν|

where X = P ⊔N is a Hahn decomposition and |χP − χN | = 1

Proposition 5.6.9

(1)|ν(E)| ≪ |ν|(E) for all E ∈ M (2)ν ≪ |ν| and dν
d|ν| has absolute value 1 |ν|-a.e. (3)L1(ν) = L1(|ν|)

and if f ∈ L1(ν), then |
∫
fdν| ≤

∫
|f |d|ν| (4)|ν1 + ν2| ≤ |ν1|+ |ν2|

Proof. Suppose dν = fdµ as in the define of |ν|. Then |ν(E)| = |
∫
E
fdµ| ≤

∫
E
|f |dµ = |ν|(E). If g = dν

d|ν| , then

fdµ = dν = gd|ν| = g|f |dµ, so g|f | = f µ-a.e. hence |ν|-a.e., note |f | > 0 |ν|-a.e. so |g| = 1 |ν|-a.e.

Take (X,M) = (Rn,BRn) µ = m below pointwise derivative of ν wrt. m, let B(x, r) be the open ball of radius

r about x in Rn, then F (x) = limr→0
ν(B(x,r))
m(B(x,r)) exists For c ∈ R, cB := B(x, cr)

Lemma 5.6.10 (Vitali Covering Lemma)

(1)(finite version)Metric space, {Bj}n1 , then exist {Bji}mi=1 disjoint and
⋃n

j=1Bj ⊆
⋃m

i=1 3Bji (2)(infinite

version)Separable metric space, F = {Bj}j∈J s.t. R := sup{rad (B) : B ∈ F} < ∞, then exist a

countable sub-collection G ⊆ F s.t. disjoint and
⋃

B∈F B ⊆
⋃

C∈G 5C. Moreover, each B ∈ F intersects

some C ∈ G with B ⊆ 5C

Proof. (1)Assume n > 0, let Bj1 be the ball of maximal radius. Once Bj1 , ..., Bjk are chosen, if there is some

ball in {Bj} that is disjoint from
⋃k

i=1Bji , then let Bjk+1
be such ball with maximal radius, o.w. set m = k

and terminate. (∀Bj)(∃Bji) has the minimal i s.t. Bj ∩ Bji ̸= ∅, then Bj ⊆ 3Bji (2)Let Fn = {B ∈ F :

2−n−1R < rad(B) ≤ 2−nR}, n ≥ 0. First let H0 = F0 and G0 be a maximal disjoint subcollection of H0
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(exist by Zorn). Once G0, ...,Gn are chosen, let Hn+1 = {B ∈ Fn+1 : B ∩
⋃n

0 Gi = ∅} and Gn+1 be a maximal

disjoint subcollection of Hn+1. G :=
⋃∞

0 Gi, note it is countable since the metric space is separable. Moreover,

∀B ∈ F ,∃C ∈ G s.t. B ⊆ C(pick the minimal C ∩B ̸= ∅)

Definition 5.6.3

measurable f : Rn → C is locally integrable (wrt. m) if
∫
K
|f(x)|dx < ∞ for every bounded measurable

set K ⊆ Rn, denote the space of locally integrable functions by L1
loc. If f ∈ L1

loc, x ∈ Rn, r > 0, define

Arf(x) =
1

m(B(x,r))

∫
B(x,r)

f(y)dy

Theorem 5.6.11

µ(X) < ∞, f ∈ L1(µ), S is a closed set in C and AE(f) = 1
µ(E)

∫
E
fdµ ∈ S for every E ∈ M with

µ(E) > 0, then f(x) ∈ S a.e. x ∈ X

Proof. Pick ∆ = Br(α) ⊆ Sc, it suffices to prove µ(E) = 0 where E = f−1(∆) If µ(E) > 0, then |AE(f)−α| ≤
1

µ(E)

∫
E
|f − α|dµ ≤ r

Lemma 5.6.12

If f ∈ L1
loc, Arf(x) is jointly continuous in r and x

Proof. Note m(B(x, r)) = crn where c = m(B(0, 1)) and m(S(x, r)) = 0 where S(x, r) = {y : |y − x| = r}.

χB(x,r) → χB(x0,r0) pointwise on Rn \ S(x0, r0), as r → r0 and x → x0. Hence χB(x,r) → χB(x0,r0) a.e., and

χB(x,r) ≤ χB(x0,r0+1) if r < r0 +
1
2 and |x− x0| < 1

2 . By DCT,
∫
B(x,r)

f(y)dy is continuous in r and x hence so

is Arf(x) = c−1r−n
∫
B(x,r)

f(y)dy

Definition 5.6.4

if f ∈ L1
loc, Hardy-Littlewood maximal function Hf(x) = supr>0Ar|f |(x) =

supr>0
1

m(B(x,r))

∫
B(x,r)

|f(y)|dy. Hf is measurable for (Hf)−1((a,∞)) =
⋃

r>0(Ar|f |)−1((a,∞))

Lemma 5.6.13

F collection of open balls in Rn, let U =
⋃

B∈F B. If c < m(U), then exist disjoint B1, ..., Bk ∈ F s.t.∑k
1 m(Bj) > 3−nc

Proof. Note exist compact K ⊆ U with m(K) > c, and finitely many of balls A1, ..., Am cover K. Then by

Vitali.

Theorem 5.6.14 (The Maixmal Theorem)

∃C > 0 s.t. ∀f ∈ L1, α > 0, m({x : Hf(x) > α}) ≤ C
α

∫
|f(x)|dx

Proof. Let Eα = {x : Hf(x) > α}. For each x ∈ Eα, choose rx > 0 s.t. Arx |f |(x) > α. B(x, rx) cover Eα, so by

lemma above, if c < m(Eα), then exist x1, ..., xk ∈ Eα s.t. Bj = B(xj , rxj
) are disjoint and

∑k
1 m(Bj) > 3−nc.
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But then c < 3n
∑k

1 m(Bj) ≤ 3n

α

∑k
1

∫
Bj

|f(y)|dy ≤ 3n

α

∫
Rn |f(y)|dy, let c→ m(Eα)

notion: lim supr→R f(r) = limϵ→0 sup0<|r−R|<ϵ f(r) = infϵ→0 sup0<|r−R|<ϵ f(r), note limr→R f(r) = c iff

lim supr→R |f(r)− c| = 0

Theorem 5.6.15

If f ∈ L1
loc, then limr→0Arf(x) = f(x), a.e. x ∈ Rn (equivalently, limr→0

1
m(B(x,r))

∫
B(x,r)

|f(y) −

f(x)|dy = 0 a.e. x)

Proof. Suffice to show for N ∈ N, Arf(x) → f(x) a.e. x with |x| ≤ N . But for |x| ≤ N , r ≤ 1, Arf(x) depend

only on the value f(y) for |y| ≤ N + 1, so by replacing f with fχB(0,N+1), assume f ∈ L1. Given ϵ > 0, exist

a continuous integrable function g s.t.
∫
|g(y) − f(y)|dy < ϵ. Note (∀x ∈ Rn)(∀δ > 0)(∃r > 0)(∀|y − x| <

r)|g(y) − g(x)| < δ. Hence |Arg(x) − g(x)| = 1
m(B(x,r)) |

∫
B(x,r)

(g(y) − g(x))dy| < δ. Therefore Arg(x) → g(x),

as r → 0 for every x, so lim supr→0 |Arf(x)− f(x)| = lim supr→0 |Ar(f − g)(x) + (Arg − g)(x) + (g − f)(x)| ≤

H(f − g)(x) + 0 + |f − g|(x). Hence if Eα = {x : lim supr→0 |Arf(x) − f(x)| > α}, Fα = {x : |f − g|(x) > α},

then Eα ⊆ Fα
2
∪ {x : H(f − g)(x) > α

2 }. But α
2m(Fα

2
) ≤

∫
Fα

2

|f(x) − g(x)|dx < ϵ. By maximal theorem,

m(Eα) ≤ 2ϵ
α + 2Cϵ

α . Since ϵ if arbitrary, m(Eα) = 0 for all α > 0. But limr→0Arf(x) = f(x) for all

x /∈
⋃∞

1 E 1
n
.

Actually, something stronger is true. Lebesgue set of f is Lf = {x : limr→0
1

m(B(x,r))

∫
B(x,r)

|f(y)−f(x)|dy = 0}

Theorem 5.6.16

If f ∈ L1
loc, then m((Lf )

c) = 0

Proof. Apply above to gc(x) = |f(x) − c|, get limr→0
1

m(B(x,r))

∫
B(x,r)

|f(y) − c|dy = |f(x) − c|. Let D be a

countable dense subset of C, let E =
⋃

c∈D Ec, thenm(E) = 0. If x /∈ E, ∀ϵ > 0, choose c ∈ D with |f(x)−c| < ϵ

s.t. |f(y)− f(x)| < |f(y)− c|+ ϵ. Then lim supr→0
1

m(B(x,r))

∫
B(x,r)

|f(y)− f(x)|dy ≤ |f(x)− c|+ ϵ < 2ϵ.

Definition 5.6.5

A family {Er r > 0} of Borel subsets of Rn is shrink nicely to x ∈ Rn if (∀r)Er ⊆ B(x, r) and

(∃α)(∀r)m(Er) > αm(B(x, r))

A Borel measure ν on Rn is regular iff ν(K) < ∞ for any compact K and ν(E) = inf{ν(U) : E ⊆

U open} for every E ∈ BRn (Actually the latter condition implies the former; note the former implies

σ-finite) A signed or complex Borel measure ν is regular if |ν| regular E.g., if f ∈ L+(Rn), then fdm

regular iff f ∈ L1
loc

Theorem 5.6.17 (Lebesgue Differentiation Theorem)

f ∈ L1
loc, for every x ∈ Lf (in particular for a.e. x), limr→0

1
m(Er)

∫
Er

|f(y) − f(x)|dy = 0 and

limr→0
1

m(Er)

∫
Er
f(y)dy = f(x) for every family {Er}r>0 that shrinks nicely to x.

Proof. For some α > 0, 1
m(Er)

∫
Er

|f(y)− f(x)|dy ≤ 1
αm(B(x,r))

∫
B(x,r)

|f(y)− f(x)|dy
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Theorem 5.6.18

ν regualr signed or complex Borel measure on Rn, dν = dλ + fdm be its Lebesgue-Radon-Nikodym

representation. Then for m-a.e. x ∈ Rn, limr→0
ν(Er)
m(Er)

= f(x) for every family {Er}r>0 that shrinks

nicely to x

Proof. Note d|ν| = d|λ| + |f |dµ, so the regularity of ν implies the regularity of λ and fdm. Get f ∈ L1
loc, by

Lebesgue Differentiation Theorem, it suffices to show if λ is regular and λ ⊥ m, then for m-a.e. x, λ(Er)
m(Er)

→ 0

as r → 0 when Er shrinks nicely to x. It also suffices to take Er = B(x, r) and assume λ is positive since for

some α > 0, we have | λ(Er)
m(Er)

| ≤ |λ|(Er)
m(Er)

≤ |λ|(B(x,r))
m(Er)

≤ |λ|(B(x,r))
αm(B(x,r)) . Assume λ ≥ 0, then let A be a Borel set s.t.

λ(A) = m(Ac) = 0, let Fk = {x ∈ A : lim supr→0
λ(B(x,r))
m(B(x,r)) >

1
k}, it suffice to show (∀k)m(Fk) = 0. Similar

to the proof of maximal theorem, given ϵ > 0, ∃A ⊆ Uϵ open s.t. λ(Uϵ) < ϵ. Each x ∈ Fk is the center of

a ball Bx ⊆ Uϵ s.t. λ(Bx) > k−1m(Bx). By Lemma, if Vϵ =
⋃

x∈Fk
Bx and c < m(Vϵ), there exist x1, ..., xJ

s.t. Bx1
, ..., BxJ

are disjoint and c < 3n
∑J

1 m(Bxj
) ≤ 3nk

∑J
1 λ(Bxj

) ≤ 3nkλ(Vϵ) ≤ 3nkλ(Uϵ) ≤ 3nkϵ, get

m(Vϵ) ≤ 3nkϵ. Since Fk ⊆ Vϵ, so m(Fk) = 0

Theorem 5.6.19

weak-1(can’t use 1 to control)-1 Estimate
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6 Algebraic Topology

6.1 Homology

Fundamental groups, covering spaces, higher homotopy groups, fibrations and the long exact sequence of a

fibration

singular homology and cohomology, relative homology, CW complexes and the homology of CW complexes

Mayer-Vietoris sequence, universal coefficient theorem, Kunneth formula, Poincare duality, Lefschetz fixed point

formula, Hopf index theorem, Cech cohomology adn deRham cohomology, equivalence between singular, Cech

and de Rham cohomology

6.2 Homotopy
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7 Functional Analysis

7.1 Functional Analysis

Hilbert space, Hahn-Banah Theorem, open mapping theorem, uniform boundedness theorem, closed graph

theorem

Basic properties of compact operators, Riesz-Fredholm Theory, spectrum of compact operators

Fourier series, Fourier transform, convolution

7.2 Harmonic Analysis
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8 Differential Manifolds

8.1 Manifold

Smooth manifold, inverse function theorem, implicit function theorem, submanifolds, Sard’s Theorem, embed-

ding theorem, transversality, degree theory, integration on manifolds

real and comlex vector bundles, tangent and cotangent bundles, basic operations on bundles such as dual bundle,

tensor products, exterior products, direct sums, pull-back bundles

differential forms, exterior product, exterior derivative, deRham cohomology, behavior under pull-back

Matrices on vector bundles

Riemann metrics, geodesic, existence and uniqueness of geodesics

associated vector bundles: relation between principal bundles and vector bundles covariant derivative for a

vector bundle and connection on a principal bundle, and their relation

curvature, flat connection, parallel transport

Levi-Civita connection and properties of the Riemann curvature tensor, manifolds of constant curvature

Jacobi fields, second variation of geodesics

Manifolds of nonpositive curvature, manifolds of positive curvature

8.2 Lie Group and Lie Algebra

Basics of matrix Lie groups over R and C: definition of Gl(n), SU(n), SO(n), U(n), their manifold structures,

Lie algebras, right and left invariant vector fields and differential forms, the exponential map

principal Lie group bundle for matrix groups

8.3 symplectic geometry

8.4 Riemann Geometry
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9 Algebraic Geometry

9.1 Algebraic Curves and Surfaces

9.2 Prerequisite

Algebraic variety

9.3 Birational Geometry

9.4 Hodge Theory

9.5 Moduli Space
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10 Complex Geometry
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11 Dynamical System

11.1 Differential Equation

Existence and uniqueness theorems for solutions of ODE; explicit solutions of simple equations; self-adjoint

boundary value problems on finite intervals; critical points, phase space, stability analysis

First order partial differential equations, linear and quasi-linear PDE

Phase plane analysis, Burgers equation, Hamilton-Jacobi equation

Potential equations: Green functions and existence of solutions of Dirichlet problem, harmonic functions, max-

imal principal and applications, existence of solutions of Neumann’s problem

Heat equation, Dirichlet problem, fundamnetal solutions

Wave equations: initial condition and boundary condition, well-posedness, Sturm-Liouville eigenvalue problem,

energy functional method, uniqueness and stability of solutions

Distributions, Sobolev embedding theorem

11.2 Ergodic Theory

11.3 Stability, Control and Chaos Theory
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12 Number Theory

12.1 Analytic Number Theory

12.2 Algebraic Number Theory

12.3 Arithmetic Geometry
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13 Probability Theory

13.1 Random Variable

Sample space, Probability space Random Variables (discrete, constant, multivariate; independent, identically-

distributed, uncorrelated) Probability Distribution (continuous, cumulative, discrete, joint; normal/Guassian,

binomial, bernoulli, exponential) Probability density function Probability Distribution function Probability

mass function characteristic function, generating function, various modes of convergence of random variable

Moment Expectation, Expected value, variance, central moment, factorial moment, coefficient of variation,

correlation, covariance, cumulance

Conditioning Bayes’ Theorem, conditional expectation given a sigma field, prior Probability

Limit theorem law of large numbers central limit theorem large deviations theory law of total covariance/cumulance/expectation/variance

13.2 Stochastic Process

Markov chain, Guass-Markov process, random graph, random matrix, Stochastic calculus, Martingales, Basic

properties of Possion processes, basic properties of Brownian motion

13.3 Distribution Theory

families of continuous distributions: normal, chi-sq, t, F, gamma, beta; families of discrete distributions: multi-

nomial, Possion, negative binomial;

13.4 Statistics

Basic statistics: sample mean, variance, median and quantiles

Testing: Neyman-Pearson paradigm, null and alternative hypotheses, simple and composite hypotheses, type I

and II errors, power, most powerful test, likelihood radio test, Neyman-Pearson Theorem, generalized likelihood

ratio test

Estimation: parameter estimation, method of moments, maximum likelihood estimation, criteria for evaluation

of estimators, Fisher information and its use, confidence interval

Bayesian Statistics: Prior, posterior, conjugate priors, Bayesian estimators

Large sample properties: consistency, asymptotic normality, chi-sq approximation to likelihood radio statistics

MLE: maximum likelihood estimate, MAP: maximum a posteriori, linear regression Bayesian estimation, conju-

gate priordistribution, posterior probability latent variable, EM: expectation maximization algorithm, mixture

model MC: Markov Chain, Markov process Monte Carlo method, MCMC: Markov Chain Monte Carlo, Gibbs

sampling
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14 Combinatorics Theory

14.1 Graph Theory

Algebraic graph theory, Ramsey theory, Van der Waerden’s theorem, Hales-Jewett theorem, Umbral calculus,

binomial type polynomial sequences

14.2 Matroid Theory

14.3 Enumerative Combinatorics

14.4 Algebraic Combinatorics

14.5 Geometric Combinatorics

14.6 Analytic Combinatorics
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15 Computation Theory

15.1 Interpolation and Approximation

Trigonometric interpolation and approximation, fast Fourier transform; approximation by rational function;

polynomial and spline interpolations and approximation; least-squares approximation

15.2 Numerical Solution of Differential Equation

ODE: Single step methods and multi-step methods, stability, accuracy and convergence; absolute stability, long

time behavior; numerical methods for stiff ODE’S PDE: finite difference method, finite element method and

spectral method; stability, accuracy and convergence, Lax equivalence theorem

15.3 Linear and Nonlinear Programming

Linear Systems and Eigenvalue Problems: Classical and modern iterative method for linear systems and eigen-

value problem, condition number and singular value decomposition, iterative methods for large sparse system

of linear equations

Nonlinear Equation Solvers: Convergence of iterative methods (bisection, Newton’s Method, quasi-Newton’s

methods and fixed-point methods) for both scalar equations and systems, finding roots of polynomial

Simplex method, interior method, penalty method, Newton’s method, homotopy method and fixed point

method, dynamic programming

15.4 Mathematical Modeling, Simulation, and Applied Analysis

Scaling behavior and asymptotic analysis, stationary phase analysis, boundary layer analysis, qualitative and

quantitative analysis of mathematical models, Monte-Carlo method

15.5 Computability and Complexity
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16 Mathematical Physics

16.1 Classical Mechanics

Lagrangian formalism: inciple of least action, Euler-Lagrangian equation, Noether Theorem, Kepler problem,

rigid body

Hamiltonian formalism: Hamilton’s equation, Poisson bracket, Liouville’s Theorem, canonical transformation,

Hamilton-Jacobi theory

16.2 Electrodynamics

Electrostatics and magnetostatics: fields, potentials, charges, electric and magnetic fields in matter

Electrodynamics: Coulomb’s law, Lorentz force law, Ohm’s law, Faraday’s law, Guass’s law, Maxwell’s equation,

conservation laws, electromagnetic waves, radiation

Basic Methods: the method of images, separation of variables, multipole expansion

16.3 Thermodynamics and Statistical Physics

Fundamental principal of thermodynamics, thermodynamic potentials and process, phase equilibrium and phase

transitions, partition function, entropy

Probability theory, the microcanonical, canonical and grand-canonical ensembles, The Boltzmann, Bose and

Fermi Statistical distributions

Examples: ideal gas model, paramagnet, ideal quantum gases, degenerate Fermi systems; photons and phonons;

Bose-Einstein condensation

16.4 Quantum Mechanics

Fundamental concepts: Hilbert space, states, observables, wave functions, Schrodinger equation, Schrodinger

and Heisenberg pictures, canonical quantization, density matrix

Examples: harmonic oscillator, hydrogen atom model, potential well problems

Symmetry in quantum mechanics, angular momentum, spin, identical particles, and atomic structure

Perturbation theory, scattering, approximation method

16.5 General Relativity

Differential geometry: metric, vector, tensor, differential forms, manifold, connections, curvature, geodesic,

tetrads, Lie derivative, isometries and Killing vector

Gravitation: the principle of equivalence, Einstein’s equation, Hilbert-Einstein action

Exact solution: Minkowski, de Sitter, anti-de Sitter spacetimes, and black hole solution

Causal structure
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16.6 Quantum Field Theory

Classical field theory: Lagrangian and Hamiltonian formalism, Noether theorem

Quantization: canonical quantization and path integrals

Fermions: representations of Poincare group, Dirac equation

S-matrix: LSZ reduction, Feymann propagator, Feymann rules, normal ordering

Wick’s theorem, the optical theorem, locality

Renormalization: regularization and cutoff, counter terms, renormalization group
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